| cla_dtree | R Documentation |
Univariate decision tree for classification using recursive partitioning.
This wrapper uses the tree package.
cla_dtree(attribute, slevels)
attribute |
attribute target to model building |
slevels |
the possible values for the target classification |
Decision trees split the feature space by maximizing node purity (e.g., Gini/entropy), yielding a human‑readable set of rules. They are fast and interpretable, and often used as base learners in ensembles.
returns a classification object
Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees. Wadsworth.
data(iris)
slevels <- levels(iris$Species)
model <- cla_dtree("Species", slevels)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.