| cla_svm | R Documentation |
Support Vector Machines (SVM) for classification using e1071::svm.
cla_svm(attribute, slevels, epsilon = 0.1, cost = 10, kernel = "radial")
attribute |
attribute target to model building |
slevels |
possible values for the target classification |
epsilon |
parameter that controls the width of the margin around the separating hyperplane |
cost |
parameter that controls the trade-off between having a wide margin and correctly classifying training data points |
kernel |
the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid) |
SVMs find a maximum‑margin hyperplane in a transformed feature space defined
by a kernel (linear, radial, polynomial, sigmoid). The cost controls the trade‑off
between margin width and training error; epsilon affects stopping; kernel sets the feature map.
returns a SVM classification object
Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Machine Learning 20(3):273–297. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
data(iris)
slevels <- levels(iris$Species)
model <- cla_svm("Species", slevels, epsilon=0.0,cost=20.000)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.