cla_rf: Random Forest for classification

View source: R/cla_rf.R

cla_rfR Documentation

Random Forest for classification

Description

Creates a classification object that uses the Random Forest method It wraps the randomForest library.

Usage

cla_rf(attribute, slevels, nodesize = 5, ntree = 10, mtry = NULL)

Arguments

attribute

attribute target to model building

slevels

possible values for the target classification

nodesize

node size

ntree

number of trees

mtry

number of attributes to build tree

Value

returns a classification object

Examples

data(iris)
slevels <- levels(iris$Species)
model <- cla_rf("Species", slevels, ntree=5)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics

daltoolbox documentation built on Nov. 3, 2024, 9:06 a.m.