| cla_rf | R Documentation |
Ensemble classifier of decision trees using randomForest::randomForest.
cla_rf(attribute, slevels, nodesize = 5, ntree = 10, mtry = NULL)
attribute |
attribute target to model building |
slevels |
possible values for the target classification |
nodesize |
node size |
ntree |
number of trees |
mtry |
number of attributes to build tree |
Combines many decorrelated trees to reduce variance. Key hyperparameters: ntree, mtry, nodesize.
returns a classification object
Breiman, L. (2001). Random Forests. Machine Learning 45(1):5–32. Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R News.
data(iris)
slevels <- levels(iris$Species)
model <- cla_rf("Species", slevels, ntree=5)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.