cla_knn | R Documentation |
Classifies using the K-Nearest Neighbor algorithm. It wraps the class library.
cla_knn(attribute, slevels, k = 1)
attribute |
attribute target to model building. |
slevels |
possible values for the target classification. |
k |
a vector of integers indicating the number of neighbors to be considered. |
returns a knn object.
data(iris)
slevels <- levels(iris$Species)
model <- cla_knn("Species", slevels, k=3)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.