View source: R/bootstrap_basic.R
| bootstrap_basic | R Documentation |
To bootstrap efficiency scores, deaR uses the algorithm proposed by Simar and Wilson (1998). For now, the function bootstrap_basic can only be used with basic DEA models.
bootstrap_basic(datadea,
orientation = c("io", "oo"),
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
B = 2000,
h = NULL,
alpha = 0.05)
datadea |
A |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
B |
Number of bootstrap iterations. |
h |
Bandwidth of smoothing window. By default |
alpha |
Between 0 and 1 (for confidence intervals). |
A list with the results (score and score_bc components)
along with any other necessary information to replicate the results, such as
the name of the model and parameters orientation, rts, bandwidth,
bias, CI (confidence intervals) and descriptives.
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
Behr, A. (2015). Production and Efficiency Analysis with R. Springer.
Bogetoft, P.; Otto, L. (2010). Benchmarking with DEA, SFA, and R. Springer.
Daraio, C.; Simar, L. (2007). Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications. New York: Springer.
Färe, R.; Grosskopf, S.; Kokkenlenberg, E. (1989). "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach". International Economic Review, 30(3), 655-666.
Löthgren, M.; Tambour, M. (1999). "Bootstrapping the Data Envelopment Analysis Malmquist Productivity Index". Applied Economics, 31, 417-425.
Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Simar, L.; Wilson, P.W. (1998). "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models". Management Science, 44(1), 49-61.
Simar, L.; Wilson, P.W. (1999). "Estimating and Bootstrapping Malmquist Indices". European Journal of Operational Research, 115, 459-471.
Simar, L.; Wilson, P.W. (2008). Statistical Inference in Nonparametric Frontier Models: Recent Developments and Perspective. In H.O. Fried; C.A. Knox Lovell and S.S. Schmidt (eds.) The Measurement of Productive Efficiency and Productivity Growth. New York: Oxford University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/acprof:oso/9780195183528.001.0001")}
# To replicate the results in Simar y Wilson (1998, p. 58) you have to
# set B=2000 (in the example B = 100 to save time)
data("Electric_plants")
data_example <- make_deadata(Electric_plants,
ni = 3,
no = 1)
result <- bootstrap_basic(datadea = data_example,
orientation = "io",
rts = "vrs",
B = 100)
result$score_bc
result$CI
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.