model_dir | R Documentation |
It solves directional, basic DEA models under constant, variable, non-increasing, non-decreasing or generalized returns to scale. By default, models are solved in a two-stage process (slacks are maximized).
model_dir(datadea,
dmu_eval = NULL,
dmu_ref = NULL,
dir_input = NULL,
dir_output = NULL,
d_input = 1,
d_output = 1,
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
maxslack = TRUE,
weight_slack_i = 1,
weight_slack_o = 1,
returnlp = FALSE,
...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation
reference set.
If |
dir_input |
A value, vector of length |
dir_output |
A value, vector of length |
d_input |
A value, vector of length |
d_output |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
maxslack |
Logical. If it is |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
Chambers, R.G.; Chung, Y.; Färe, R. (1996). "Benefit and Distance Functions", Journal of Economic Theory, 70(2), 407-419.
Chambers, R.G.; Chung, Y.; Färe, R. (1998). "Profit Directional Distance Functions and Nerlovian Efficiency", Journal of Optimization Theory and Applications, 95, 351-354.
model_basic
, model_lgo
, model_qgo
data("PFT1981")
# Selecting DMUs in Program Follow Through (PFT)
PFT <- PFT1981[1:49, ]
PFT <- make_deadata(PFT,
inputs = 2:6,
outputs = 7:9 )
eval_pft <- model_dir(PFT)
efficiencies(eval_pft)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.