View source: R/malmquist_index.R
malmquist_index | R Documentation |
This function calculates the input/output oriented Malmquist productivity index under constant or variable returns-to-scale.
malmquist_index(datadealist,
dmu_eval = NULL,
dmu_ref = NULL,
orientation = c("io", "oo"),
rts = c("crs", "vrs"),
type1 = c("cont", "seq", "glob"),
type2 = c("fgnz", "rd", "gl", "bias"),
tc_vrs = FALSE,
vtrans_i = NULL,
vtrans_o = NULL)
datadealist |
A list with the data ( |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant) or "vrs" (variable). |
type1 |
A string, equal to "cont" (contemporary), "seq" (sequential) or "glob" (global). |
type2 |
A string, equal to "fgnz" (Fare et al. 1994), "rd" (Ray and Desli 1997), "gl" (generalized) or "bias" (biased). |
tc_vrs |
Logical. If it is |
vtrans_i |
Numeric vector of translation for undesirable inputs in non-directional
basic models. If |
vtrans_o |
Numeric vector of translation for undesirable outputs in
non-directional basic models, analogous to |
A numeric list with Malmquist index and other parameters.
In the results: EC = Efficiency Change, PTEC = Pure Technical Efficiency Change, SEC = Scale Efficiency Change, TC = Technological Change, MI = Malmquist Index
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benitez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
Caves, D.W.; Christensen, L. R.; Diewert, W.E. (1982). “The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity”. Econometrica, 50(6), 1393-1414.
Fare, R.; Grifell-Tatje, E.; Grosskopf, S.; Lovell, C.A.K. (1997). "Biased Technical Change and the Malmquist Productivity Index". Scandinavian Journal of Economics, 99(1), 119-127.
Fare, R.; Grosskopf, S.; Lindgren, B.; Roos, P. (1989). “Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach”. Discussion paper n. 89-3. Southern Illinois University. Illinois.
Fare, R.; Grosskopf, S.; Lindgren, B.; Roos, P. (1992). “Productivity changes in Swedish Pharmacies 1980-89: A nonparametric Malmquist Approach”. Journal of productivity Analysis, 3(3), 85-101.
Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. (1994). “Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries”. American Economic Review, 84(1), 66-83.
Fare, R.; Grosskopf, S.; Roos, P. (1998), Malmquist Productivity Indexes: A Survey of Theory and Practice. In: Fare R., Grosskopf S., Russell R.R. (eds) Index Numbers: Essays in Honour of Sten Malmquist. Springer.
Grifell-Tatje, E.; Lovell, C.A.K. (1999). "A Generalized Malmquist productivity index". Top, 7(1), 81-101.
Pastor, J.T.; Lovell, C.A.k. (2005). "A global Malmquist productiviyt index". Economics Letters, 88, 266-271.
Ray, S.C.; Desli, E. (1997). "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment". The American Economic Review, 87(5), 1033-1039.
Shestalova, V. (2003). "Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities". Journal of Productivity Analysis, 19, 211-226.
# Example 1. With dataset in wide format.
# Replication of results in Wang and Lan (2011, p. 2768)
data("Economy")
data_example <- make_malmquist(datadea = Economy,
nper = 5,
arrangement = "horizontal",
ni = 2,
no = 1)
result <- malmquist_index(data_example, orientation = "io")
mi <- result$mi
effch <- result$ec
tech <- result$tc
# Example 2. With dataset in long format.
# Replication of results in Wang and Lan (2011, p. 2768)
data("EconomyLong")
data_example2 <- make_malmquist(EconomyLong,
percol = 2,
arrangement = "vertical",
inputs = 3:4,
outputs = 5)
result2 <- malmquist_index(data_example2, orientation = "io")
mi2 <- result2$mi
effch2 <- result2$ec
tech2 <- result2$tc
# Example 3. Replication of results in Grifell-Tatje and Lovell (1999, p. 100).
data("Grifell_Lovell_1999")
data_example <- make_malmquist(Grifell_Lovell_1999,
percol = 1,
dmus = 2,
inputs = 3,
outputs = 4,
arrangement = "vertical")
result_fgnz <- malmquist_index(data_example,
orientation = "oo",
rts = "vrs",
type1 = "cont",
type2 = "fgnz")
mi_fgnz <- result_fgnz$mi
result_rd <- malmquist_index(data_example,
orientation = "oo",
rts = "vrs",
type1 = "cont",
type2 = "rd")
mi_rd <- result_rd$mi
result_gl <- malmquist_index(data_example,
orientation = "oo",
rts = "vrs",
type1 = "cont",
type2 = "gl")
mi_gl <- result_gl$mi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.