Description Usage Arguments Details Value Warning Author(s) References See Also Examples
deamerKE
performs a deconvolution estimation of the density of a noisy variable ('y'
) under
the hypothesis of a known density of the noise ("KE" for "known error").
deamerKE
allows to choose between a Gaussian or a Laplace density for the noise.
The standard deviation of the noise (resp. the scale parameter) is required. By default, deamerKE
will consider the noise centered around zero.
1 |
y |
Numeric. The vector of noisy observations |
mu |
Numeric. The (known) mean of the noise. Defaults to zero. |
sigma |
Numeric. The (known) standard deviation of the noise if |
noise.type |
Character. Defines the type of density for the noise. Only |
grid.length |
Numeric. Optional. The number of points of the grid the estimation is performed on. Defaults to 100. |
from |
Numeric. Optional. The lower bound of the grid the estimation is performed on. Defaults to |
to |
Numeric. Optional. The upper bound of the grid the estimation is performed on. Defaults to |
na.rm |
Logical. Optional. If |
The model is y = x + e where x has an unknown density f and
e is a symmetric variable around mu
(either Laplace or Gaussian).
Therefore, deamerKE
can directly handle non-centered noise by specifying mu
.
The Gaussian mean and standard deviation have the general meaning.
The Laplace density function is parameterized as:
exp(-|x-mu|/sigma)/(2sigma)
An object of class 'deamer'
deamerKE
is not implemented for heteroscedastic errors.
Julien Stirnemann <j.stirnemann@gmail.com>
Comte F, Rozenholc Y, Taupin M-L. Penalized Contrast Estimator for Adaptive
Density Deconvolution. The Canadian Journal of Statistics /
La Revue Canadienne de Statistique. 2006; 34(3):431-52.
deamer
,
deamerRO
,
deamerSE
,
deamer-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #########################################################
#EXAMPLE 1: known error, Laplacian
set.seed(12345)
n=1000
rff=function(x){
u=rbinom(x, 1, 0.5)
X=u*rnorm(x, -2, 1)+(1-u)*rnorm(x,2,1)
return(X)
}
x <- rff(n) #a mixed gaussian distribution
# true density function:
f.true=function(x) (0.5/(sqrt(2*pi)))*(exp(-0.5*(x+2)^2) + exp(-0.5*(x-2)^2))
e <- rlaplace(n, 0, 0.5)
y <- x + e
est <- deamerKE(y, noise.type="laplace", sigma=0.5)
est
curve(f.true(x), -6, 6, lwd=2, lty=3)
lines(est, lwd=2)
lines(density(y), lwd=2, lty=4)
legend("topleft", bty="n", lty=c(1,3,4), lwd=2, legend=c("deamerKE", "true density",
"kernel density\nof noisy obs."))
#########################################################
#EXAMPLE 2: known error, Laplacian and non-centered
set.seed(12345)
n=1000
rff=function(x){
u=rbinom(x, 1, 0.5)
X=u*rnorm(x, -2, 1)+(1-u)*rnorm(x,2,1)
return(X)
}
x <- rff(n) #a mixed gaussian distribution
# true density function:
f.true=function(x) (0.5/(sqrt(2*pi)))*(exp(-0.5*(x+2)^2) + exp(-0.5*(x-2)^2))
e <- rlaplace(n, 2, 0.5) #mean=2 and not zero!
y <- x + e
est <- deamerKE(y, noise.type="laplace", mu=2, from=-4, to=4, sigma=0.5)
est
curve(f.true(x), -6, 6, lwd=2, lty=3)
lines(est, lwd=2)
lines(density(y), lwd=2, lty=4)
legend("topleft", bty="n", lty=c(1,3,4), lwd=2, legend=c("deamerKE", "true density",
"kernel density\nof noisy obs."))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.