inst/tinytest/test-power.r

library(tinytest)

#-------------------------------------------------------------------------------
# Structure
#-------------------------------------------------------------------------------
# Independent two-sample t-Test
set.seed(1234)
d <- sim_log_lognormal(
  n1 = 20,
  n2 = 20,
  ratio = c(1.2, 1.4),
  cv1 = 0.4,
  cv2 = 0.4,
  cor = 0,
  nsims = 1000
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(20, 20), label = "n1"),
      n2 = structure(c(20, 20), label = "n2"),
      ratio = structure(c(1.2, 1.4), label = "Ratio"),
      cv1 = structure(c(0.4, 0.4), label = "CV1"),
      cv2 = structure(c(0.4, 0.4), label = "CV2"),
      cor = structure(c(0, 0), label = "Correlation"),
      distribution = structure(
        c(
          "Independent two-sample log(lognormal)",
          "Independent two-sample log(lognormal)"
        ),
        label = "Distribution"
      ),
      nsims = structure(c(1000, 1000), label = "N Simulations"),
      test = structure(
        c(
          `t_test_welch()` = "Welch's t-Test",
          `t_test_welch()` = "Welch's t-Test"
        ),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05), label = "Alpha"),
      power = structure(c(0.312, 0.772), label = "Power")
    ),
    row.names = c(NA, -2L),
    class = c(
      "depower",
      "log_lognormal_independent_two_sample",
      "tbl_df",
      "tbl",
      "data.frame"
    )
  ),
  tolerance = 0.03,
  scale = 1
)

# Dependent two-sample t-Test
set.seed(1234)
d <- sim_log_lognormal(
  n1 = 20,
  n2 = 20,
  ratio = c(1.2, 1.4),
  cv1 = 0.4,
  cv2 = 0.4,
  cor = 0.5,
  nsims = 1000
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(20, 20), label = "n1"),
      n2 = structure(c(20, 20), label = "n2"),
      ratio = structure(c(1.2, 1.4), label = "Ratio"),
      cv1 = structure(c(0.4, 0.4), label = "CV1"),
      cv2 = structure(c(0.4, 0.4), label = "CV2"),
      cor = structure(c(0.5, 0.5), label = "Correlation"),
      distribution = structure(
        c(
          "Dependent two-sample log(lognormal)",
          "Dependent two-sample log(lognormal)"
        ),
        label = "Distribution"
      ),
      nsims = structure(c(1000, 1000), label = "N Simulations"),
      test = structure(
        c(
          `t_test_paired()` = "Paired t-Test",
          `t_test_paired()` = "Paired t-Test"
        ),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05), label = "Alpha"),
      power = structure(c(0.535, 0.957), label = "Power")
    ),
    row.names = c(NA, -2L),
    class = c(
      "depower",
      "log_lognormal_dependent_two_sample",
      "tbl_df",
      "tbl",
      "data.frame"
    )
  ),
  tolerance = 0.03,
  scale = 1
)

# Mixed-type two-sample t-Test
set.seed(1234)
d <- sim_log_lognormal(
  n1 = 20,
  n2 = 20,
  ratio = c(1.2, 1.4),
  cv1 = 0.4,
  cv2 = 0.4,
  cor = c(0, 0.5),
  nsims = 1000
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(20, 20, 20, 20), label = "n1"),
      n2 = structure(c(20, 20, 20, 20), label = "n2"),
      ratio = structure(c(1.2, 1.4, 1.2, 1.4), label = "Ratio"),
      cv1 = structure(c(0.4, 0.4, 0.4, 0.4), label = "CV1"),
      cv2 = structure(c(0.4, 0.4, 0.4, 0.4), label = "CV2"),
      cor = structure(c(0, 0, 0.5, 0.5), label = "Correlation"),
      distribution = structure(
        c(
          "Independent two-sample log(lognormal)",
          "Independent two-sample log(lognormal)",
          "Dependent two-sample log(lognormal)",
          "Dependent two-sample log(lognormal)"
        ),
        label = "Distribution"
      ),
      nsims = structure(c(1000, 1000, 1000, 1000), label = "N Simulations"),
      test = structure(
        c(
          `t_test_welch()` = "Welch's t-Test",
          `t_test_welch()` = "Welch's t-Test",
          `t_test_paired()` = "Paired t-Test",
          `t_test_paired()` = "Paired t-Test"
        ),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05, 0.05, 0.05), label = "Alpha"),
      power = structure(c(0.312, 0.772, 0.54, 0.963), label = "Power")
    ),
    row.names = c(NA, -4L),
    class = c(
      "depower",
      "log_lognormal_mixed_two_sample",
      "tbl_df",
      "tbl",
      "data.frame"
    )
  ),
  tolerance = 0.03,
  scale = 1
)

# One-sample t-Test
set.seed(1234)
d <- sim_log_lognormal(
  n1 = 20,
  ratio = c(1.2, 1.4),
  cv1 = 0.4,
  nsims = 1000
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(20, 20), label = "n1"),
      ratio = structure(c(1.2, 1.4), label = "Ratio"),
      cv1 = structure(c(0.4, 0.4), label = "CV1"),
      distribution = structure(
        c("One-sample log(lognormal)", "One-sample log(lognormal)"),
        label = "Distribution"
      ),
      nsims = structure(c(1000, 1000), label = "N Simulations"),
      test = structure(
        c(
          `t_test_paired()` = "One-sample t-Test",
          `t_test_paired()` = "One-sample t-Test"
        ),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05), label = "Alpha"),
      power = structure(c(0.515, 0.958), label = "Power")
    ),
    row.names = c(NA, -2L),
    class = c(
      "depower",
      "log_lognormal_one_sample",
      "tbl_df",
      "tbl",
      "data.frame"
    )
  ),
  tolerance = 0.03,
  scale = 1
)

# NB test
set.seed(1234)
d <- sim_nb(
  n1 = 10,
  mean1 = 10,
  ratio = c(1.6, 2),
  dispersion1 = 2,
  dispersion2 = 2,
  nsims = 200
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(10, 10), label = "n1"),
      n2 = structure(c(10, 10), label = "n2"),
      mean1 = structure(c(10, 10), label = "Mean1"),
      mean2 = structure(c(16, 20), label = "Mean2"),
      ratio = structure(c(1.6, 2), label = "Ratio"),
      dispersion1 = structure(c(2, 2), label = "Dispersion1"),
      dispersion2 = structure(c(2, 2), label = "Dispersion2"),
      distribution = structure(
        c("Independent two-sample NB", "Independent two-sample NB"),
        label = "Distribution"
      ),
      nsims = structure(c(200, 200), label = "N Simulations"),
      test = structure(
        c(`wald_test_nb()` = "NB Wald test", `wald_test_nb()` = "NB Wald test"),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05), label = "Alpha"),
      power = structure(c(0.315, 0.545), label = "Power")
    ),
    row.names = c(NA, -2L),
    class = c("depower", "nb", "tbl_df", "tbl", "data.frame")
  ),
  tolerance = 0.03,
  scale = 1
)

# BNB test
# 2024-12-09 CRAN test failed with ATLAS BLAS. Add tolerance to allow varying
# numerical precision.
set.seed(1234)
d <- sim_bnb(
  n = 10,
  mean1 = 10,
  ratio = c(1.4, 1.6),
  dispersion = 10,
  nsims = 200
) |>
  power()

expect_equal(
  d,
  structure(
    list(
      n1 = structure(c(10, 10), label = "n1"),
      n2 = structure(c(10, 10), label = "n2"),
      mean1 = structure(c(10, 10), label = "Mean1"),
      mean2 = structure(c(14, 16), label = "Mean2"),
      ratio = structure(c(1.4, 1.6), label = "Ratio"),
      dispersion1 = structure(c(10, 10), label = "Dispersion1"),
      distribution = structure(
        c("Dependent two-sample BNB", "Dependent two-sample BNB"),
        label = "Distribution"
      ),
      nsims = structure(c(200, 200), label = "N Simulations"),
      test = structure(
        c(
          `wald_test_bnb()` = "BNB Wald test",
          `wald_test_bnb()` = "BNB Wald test"
        ),
        label = "Test"
      ),
      alpha = structure(c(0.05, 0.05), label = "Alpha"),
      power = structure(c(0.86, 0.97), label = "Power")
    ),
    row.names = c(NA, -2L),
    class = c("depower", "bnb", "tbl_df", "tbl", "data.frame")
  ),
  tolerance = 0.025,
  scale = 1
)

#-------------------------------------------------------------------------------
# Validated t-test power
# from SAS
#-------------------------------------------------------------------------------
set.seed(1234)
# Independent two sample
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 30,
    ratio = 1.3,
    cv1 = 0.35,
    cv2 = 0.35,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.8363,
  tolerance = 0.04,
  scale = 1
)

# Independent two sample (inverted fc)
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 30,
    ratio = 1 / 1.3,
    cv1 = 0.35,
    cv2 = 0.35,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.8363,
  tolerance = 0.04,
  scale = 1
)

# Independent two sample (different sample sizes)
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 100,
    ratio = 1.3,
    cv1 = 0.35,
    cv2 = 0.35,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.9573,
  tolerance = 0.03,
  scale = 1
)

# Independent two sample (different CV)
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 30,
    ratio = 1.1,
    cv1 = 0.3,
    cv2 = 0.5,
    cor = 0.345,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.19762,
  tolerance = 0.05,
  scale = 1
)

# Paired two sample (Same CV)
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 30,
    ratio = 1.1,
    cv1 = 0.3,
    cv2 = 0.3,
    cor = 0.345,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.32798,
  tolerance = 0.05,
  scale = 1
)

# Paired two sample (Different CV)
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    n2 = 30,
    ratio = 1.3,
    cv1 = 0.7,
    cv2 = 0.4,
    cor = 0.765,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.93598,
  tolerance = 0.03,
  scale = 1
)

# one-sample
expect_equal(
  sim_log_lognormal(
    n1 = 30,
    ratio = 1.3,
    cv1 = 0.35,
    nsims = 10000
  ) |>
    power() |>
    getElement("power") |>
    as.numeric(),
  0.983,
  tolerance = 0.02,
  scale = 1
)

#-------------------------------------------------------------------------------
# Validated NB power
# table 1 and 2 in Rettiganti (2012) doi:10.1080/10543406.2010.528105
#-------------------------------------------------------------------------------
expect_equal(
  sim_nb(
    n1 = 76,
    mean1 = 5.9,
    ratio = 0.5,
    dispersion1 = 0.49,
    nsims = 1000
  ) |>
    power(lrt_nb()) |>
    getElement("power") |>
    as.numeric(),
  0.8,
  tolerance = 0.05,
  scale = 1
)

expect_equal(
  sim_nb(
    n1 = 87,
    mean1 = 5.9,
    ratio = 0.5,
    dispersion1 = 0.49,
    dispersion2 = 0.3675,
    nsims = 1000
  ) |>
    power(lrt_nb()) |>
    getElement("power") |>
    as.numeric(),
  0.8,
  tolerance = 0.05,
  scale = 1
)

#-------------------------------------------------------------------------------
# Validated BNB power
# table 4 in Rettiganti (2012) doi:10.1080/10543406.2010.528105
#-------------------------------------------------------------------------------
expect_equal(
  sim_bnb(
    n = 10,
    mean1 = 5.9,
    ratio = 0.5,
    dispersion = 0.49,
    nsims = 1000
  ) |>
    power(lrt_bnb()) |>
    getElement("power") |>
    as.numeric(),
  0.82,
  tolerance = 0.05,
  scale = 1
)

#-------------------------------------------------------------------------------
# Data with majority zeros
#-------------------------------------------------------------------------------
nsims <- 200
set.seed(1234)
d <- sim_nb(
  n1 = c(10),
  n2 = c(10),
  mean1 = c(10),
  mean2 = c(15),
  dispersion1 = c(0.01),
  dispersion2 = c(0.01),
  nsims = nsims
) |>
  power()

expect_true(d$nsims < nsims * 0.5)

nsims <- 200
set.seed(1234)
d <- sim_bnb(
  n = 10,
  mean1 = 10,
  ratio = 1.3,
  dispersion = 0.01,
  nsims = 200
) |>
  power() |>
  suppressWarnings()

expect_true(d$nsims < nsims * 0.5)

Try the depower package in your browser

Any scripts or data that you put into this service are public.

depower documentation built on Nov. 5, 2025, 5:21 p.m.