Nothing
"dMax" <- function(low, ...) UseMethod("dMax")
"dMin" <- function(low, ...) UseMethod("dMin")
"dTarget" <- function(low, ...) UseMethod("dTarget")
"dArb" <- function(x, ...) UseMethod("dArb")
"dBox" <- function(low, ...) UseMethod("dBox")
"dOverall" <- function(...) UseMethod("dOverall")
"dCategorical" <- function(...) UseMethod("dCategorical")
dMax.default <- function(low, high, scale = 1, tol = NULL, ...)
{
if(low >= high) stop("the low value must be greater than the high value")
if(scale <= 0) stop("the scale parameter must be greater than zero")
tmp <- list(low = low, high = high, scale = scale, missing = NA, ...)
testSeq <- seq(tmp$low, tmp$high, length = 100)
nonInformValue <- mean(predict.dMax(tmp, testSeq))
structure(
list(low = low, high = high, scale = scale, missing = nonInformValue, tol = tol, call = match.call(expand.dots = TRUE)),
class = "dMax")
}
dMin.default <- function(low, high, scale = 1, tol = NULL, ...)
{
if(low >= high) stop("the low value must be greater than the high value")
if(scale <= 0) stop("the scale parameter must be greater than zero")
tmp <- list(low = low, high = high, scale = scale, missing = NA)
testSeq <- seq(tmp$low, tmp$high, length = 100)
nonInformValue <- mean(predict.dMin(tmp, testSeq))
structure(
list(low = low, high = high, scale = scale, missing = nonInformValue, tol = tol, call = match.call(expand.dots = TRUE)),
class = "dMin")
}
dTarget.default <- function(low, target, high, lowScale = 1, highScale = 1, tol = NULL, ...)
{
if(low >= high) stop("the low value must be greater than the high value")
if(low >= target) stop("the low value must be greater than the target")
if(target >= high) stop("the target value must be greater than the high value")
if(lowScale <= 0 | highScale <= 0) stop("the scale parameter must be greater than zero")
tmp <- list(low = low, target = target, high = high, lowScale = lowScale, highScale = highScale, missing = NA)
testSeq <- seq(tmp$low, tmp$high, length = 100)
nonInformValue <- mean(predict.dTarget(tmp, testSeq))
structure(
list(low = low, target = target, high = high, lowScale = lowScale, highScale = highScale, missing = nonInformValue, tol = tol, call = match.call(expand.dots = TRUE)),
class = "dTarget")
}
dArb.default <- function(x, d, tol = NULL, ...)
{
if(any(d > 1)| any(d < 0)) stop("the desirability values must be 0 <= d <= 1")
if(length(x) != length(d)) stop("x and d must have the same length")
if(length(x) < 2 | length(d) < 2) stop("x and d must have at least two values")
ord <- order(x)
x <- x[ord]
d <- d[ord]
tmp <- list(x = x, d = d, missing = NA)
testSeq <- seq(min(x), max(x), length = 100)
nonInformValue <- mean(predict.dArb(tmp, testSeq), na.rm = TRUE)
structure(
list(x = x, d = d, missing = nonInformValue, tol = tol, call = match.call(expand.dots = TRUE)),
class = "dArb")
}
dBox.default <- function(low, high, tol = NULL, ...)
{
if(low >= high) stop("the low value must be greater than the high value")
tmp <- list(low = low, high = high, missing = NA)
testSeq <- seq(tmp$low, tmp$high, length = 100)
nonInformValue <- mean(predict.dBox(tmp, testSeq))
structure(
list(low = low, high = high, missing = nonInformValue, tol = tol, call = match.call(expand.dots = TRUE)),
class = "dBox")
}
dOverall.default <- function(...)
{
dObjs <- list(...)
dClasses <- unlist(lapply(dObjs, class))
if(!all(dClasses %in% c("dMax", "dMin", "dTarget", "dArb", "dBox", "dCategorical")))
stop("some classes do not have classes in dMax, dMin, dTarget, dArb, dCategorical or dBox")
structure(
list(d = dObjs, call = match.call(expand.dots = TRUE)),
class = "dOverall")
}
dCategorical.default <- function (values, tol = NULL, ...)
{
if(length(values) < 2) stop("'values' should have at least two values")
vals <- names(values)
if(any(vals == "") | is.null(vals)) stop("'values' should be a named vector")
if(!is.vector(values)) stop("'values' should be a named vector")
tmp <- list(values = values, tol = tol, missing = NA, ...)
nonInformValue <- mean(predict.dCategorical(tmp, names(values)))
structure(list(values = values, tol = tol, missing = nonInformValue,
tol = tol, call = match.call(expand.dots = TRUE)), class = "dCategorical")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.