Nothing
# Define the inputs of the function
# X: a matrix with n rows and TT columns representing the observed data at each time t.
# A: a transition matrix with size r*p+r*r.
# C: an observation matrix with size n*r.
# Q: a covariance matrix for the state equation disturbances with size r*p+r*r.
# R: a covariance matrix for the observation disturbances with size n*n.
# Z_0: the initial value of the state variable.
# V_0: the initial value of the variance-covariance matrix of the state variable.
# r: order of the state autoregression (AR) process.
# p: number of lags in the state AR process.
# i_idio: a vector of indicators specifying which variables are idiosyncratic noise variables.'
# Z_0 = F_0; V_0 = P_0
EMstepBMMQidio = function(X, A, C, Q, R, Z_0, V_0, XW0, NW, dgind, dnkron, dnkron_ind, r, p, R_mat, n, nq, sr, TT, rQi, rRi) {
# Define dimensions of the input arguments
rC = 5L # ncol(Rcon)
pC = max(p, rC)
rp = r * p
rpC = r * pC
nm = n - nq
rC = rC * r # Note here replacing rC!!
snm = seq_len(nm)
srp = seq_len(rp)
srpC = seq_len(rpC)
rpC1nq = (rpC+1L):(rpC+nq)
# Run Kalman filter with current parameter estimates
kfs_res = SKFS(X, A, C, Q, R, Z_0, V_0, TRUE)
# Extract values from the Kalman Filter output
Zsmooth = kfs_res$F_smooth
Vsmooth = kfs_res$P_smooth
VVsmooth = kfs_res$PPm_smooth
Zsmooth0 = kfs_res$F_smooth_0
Vsmooth0 = kfs_res$P_smooth_0
loglik = kfs_res$loglik
# Normal Expectations for factors
tmp = rbind(Zsmooth0[srpC], Zsmooth[-TT, srpC, drop = FALSE])
tmp2 = sum3(Vsmooth[srpC, srpC, -TT, drop = FALSE])
EZZ = crossprod(Zsmooth[, srpC, drop = FALSE]) %+=% (tmp2 + Vsmooth[srpC, srpC, TT]) # E(Z'Z)
EZZ_BB = crossprod(tmp) %+=% (tmp2 + Vsmooth0[srpC, srpC]) # E(Z(-1)'Z(-1))
EZZ_FB = crossprod(Zsmooth[, srpC, drop = FALSE], tmp) %+=% sum3(VVsmooth[srpC, srpC,, drop = FALSE]) # E(Z'Z(-1))
# Expectations for idiosyncratic errors
tmp = rbind(Zsmooth0[rpC1nq], Zsmooth[-TT, rpC1nq, drop = FALSE])
tmp2 = sum3(Vsmooth[rpC1nq, rpC1nq, -TT, drop = FALSE])
EZZ_u = diag(crossprod(Zsmooth[, rpC1nq, drop = FALSE])) + diag(tmp2 + Vsmooth[rpC1nq, rpC1nq, TT]) # E(Z'Z)
EZZ_BB_u = diag(crossprod(tmp)) + diag(tmp2 + Vsmooth0[rpC1nq, rpC1nq]) # E(Z(-1)'Z(-1))
EZZ_FB_u = diag(diag(crossprod(Zsmooth[, rpC1nq, drop = FALSE], tmp)) + diag(rowSums(VVsmooth[rpC1nq, rpC1nq,, drop = FALSE], dims = 2L))) # E(Z'Z(-1))
# Update matrices A and Q
A_new = A
Q_new = Q
# System matrices for factors
A_new[sr, srp] = EZZ_FB[sr, , drop = FALSE] %*% ainv(EZZ_BB)
if(rQi) {
Qsr = (EZZ[sr, sr] - tcrossprod(A_new[sr, srp, drop = FALSE], EZZ_FB[sr,, drop = FALSE])) / TT
Q_new[sr, sr] = if(rQi == 2L) Qsr else diag(diag(Qsr))
} else Q_new[sr, sr] = diag(r)
# System matrices for errors
A_new[rpC1nq, rpC1nq] = EZZ_FB_u / EZZ_BB_u
if(rRi) {
if(rRi == 2L) stop("Cannot estimate unrestricted observation covariance matrix together with AR(1) serial correlation")
Q_new[rpC1nq, rpC1nq] = (diag(EZZ_u) - A_new[rpC1nq, rpC1nq] * EZZ_FB_u) / TT
} else Q_new[rpC1nq, rpC1nq] = diag(nm)
# Estimate matrix C using maximum likelihood approach
denom = numeric(nm*r^2)
nom = matrix(0, nm, r)
for (t in seq_len(TT)) {
nmiss = as.double(NW[t, 1:nm])
tmp = t(Zsmooth[t, sr])
tmp2 = crossprod(tmp) + Vsmooth[sr, sr, t]
dim(tmp2) = NULL
denom %+=% tcrossprod(tmp2, nmiss)
nom %+=% (XW0[t, 1:nm] %*% tmp)
nom %-=% ((Zsmooth[t, rpC1nq] %*% tmp + Vsmooth[rpC1nq, sr, t]) * nmiss)
}
dim(denom) = c(r, r, nm)
dnkron[dnkron_ind] = aperm.default(denom, c(1L, 3L, 2L))
vec_C = solve.default(dnkron, unattrib(nom))
C_new = C
C_new[1:nm, sr] = vec_C
# Now updating the quarterly observation matrix C
for (i in (nm+1):n) {
denom = numeric(rC^2)
nom = numeric(rC)
i_idio_jQ = rpC + nm + 5*((i-nm)-1) + 1:5
for (t in 1:TT) {
if(NW[t, i]) {
denom %+=% (crossprod(Zsmooth[t, 1:rC, drop = FALSE]) + Vsmooth[1:rC, 1:rC, t])
nom %+=% (XW0[t, i] * Zsmooth[t, 1:rC])
nom %-=% (c(1,2,3,2,1) %*% (Zsmooth[t, i_idio_jQ] %*% t(Zsmooth[t, 1:rC]) + Vsmooth[i_idio_jQ, 1:rC, t]))
}
}
dim(denom) = c(rC, rC)
denom_inv = ainv(denom)
C_i = denom_inv %*% nom
tmp = tcrossprod(denom_inv, R_mat)
C_i_constr = C_i - tmp %*% ainv(R_mat %*% tmp) %*% R_mat %*% C_i
C_new[i, 1:rC] = C_i_constr
# Update AR parameters for quarterly idiosyncratic errors
V_0_new = V_0
V_0_new[i_idio_jQ, i_idio_jQ] = Vsmooth[i_idio_jQ, i_idio_jQ, 1]
A_new[i_idio_jQ[1], i_idio_jQ[1]] = A_new[rpC1nq[i-nm], rpC1nq[i-nm]]
Q_new[i_idio_jQ[1], i_idio_jQ[1]] = Q_new[rpC1nq[i-nm], rpC1nq[i-nm]]
}
# Set initial conditions
V_0_new = V_0
V_0_new[srpC, srpC] = Vsmooth0[srpC, srpC]
V_0_new[rpC1nq, rpC1nq] = diag(diag(Vsmooth0[rpC1nq, rpC1nq, drop = FALSE]))
return(list(A = A_new,
C = C_new,
Q = Q_new,
R = R, # R stays fixed
F_0 = drop(Zsmooth0),
P_0 = V_0_new,
loglik = loglik))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.