Nothing
# Define the inputs of the function
# X: a matrix with n rows and TT columns representing the observed data at each time t.
# A: a transition matrix with size r*p+r*r.
# C: an observation matrix with size n*r.
# Q: a covariance matrix for the state equation disturbances with size r*p+r*r.
# R: a covariance matrix for the observation disturbances with size n*n.
# Z_0: the initial value of the state variable.
# V_0: the initial value of the variance-covariance matrix of the state variable.
# r: order of the state autoregression (AR) process.
# p: number of lags in the state AR process.
# i_idio: a vector of indicators specifying which variables are idiosyncratic noise variables.'
# Z_0 = F_0; V_0 = P_0
EMstepBMidio = function(X, A, C, Q, R, Z_0, V_0, XW0, W, dgind, dnkron, dnkron_ind, r, p, n, sr, TT, rQi, rRi) {
# Define dimensions of the input arguments
srp = seq_len(r*p)
rp1nr = (r*p+1L):ncol(A)
# Compute expected sufficient statistics for a single Kalman filter sequence
# Run the Kalman filter with the current parameter estimates
kfs_res = SKFS(X, A, C, Q, R, Z_0, V_0, TRUE)
# Extract values from the Kalman Filter output
Zsmooth = kfs_res$F_smooth
Vsmooth = kfs_res$P_smooth
VVsmooth = kfs_res$PPm_smooth
Zsmooth0 = kfs_res$F_smooth_0
Vsmooth0 = kfs_res$P_smooth_0
loglik = kfs_res$loglik
# Perform algebraic operations involving E(Z_t), E(Z_{t-1}), Y_t, Y_{t-1} to update A_new, Q_new, C_new, and R_new
# Normal Expectations to get Z(t+1) and A(t+1).
tmp = rbind(Zsmooth0[srp], Zsmooth[-TT, srp, drop = FALSE])
tmp2 = sum3(Vsmooth[srp, srp, -TT, drop = FALSE])
EZZ = crossprod(Zsmooth[, srp, drop = FALSE]) %+=% (tmp2 + Vsmooth[srp, srp, TT]) # E(Z'Z)
EZZ_BB = crossprod(tmp) %+=% (tmp2 + Vsmooth0[srp, srp]) # E(Z(-1)'Z(-1))
EZZ_FB = crossprod(Zsmooth[, srp, drop = FALSE], tmp) %+=% sum3(VVsmooth[srp, srp,, drop = FALSE]) # E(Z'Z(-1))
# Expectations on the erros (u_t).
tmp = rbind(Zsmooth0[rp1nr], Zsmooth[-TT, rp1nr, drop = FALSE])
tmp2 = sum3(Vsmooth[rp1nr, rp1nr, -TT, drop = FALSE])
EZZ_u = diag(crossprod(Zsmooth[, rp1nr, drop = FALSE])) + diag(tmp2 + Vsmooth[rp1nr, rp1nr, TT]) # E(Z'Z)
EZZ_BB_u = diag(crossprod(tmp)) + diag(tmp2 + Vsmooth0[rp1nr, rp1nr]) # E(Z(-1)'Z(-1))
EZZ_FB_u = diag(diag(crossprod(Zsmooth[, rp1nr, drop = FALSE], tmp)) + diag(rowSums(VVsmooth[rp1nr, rp1nr,, drop = FALSE], dims = 2L))) # E(Z'Z(-1))
# Update matrices A and Q
A_new = A
Q_new = Q
# System matrices
A_new[sr, srp] = EZZ_FB[sr, , drop = FALSE] %*% ainv(EZZ_BB)
if(rQi) {
Qsr = (EZZ[sr, sr] - tcrossprod(A_new[sr, srp, drop = FALSE], EZZ_FB[sr,, drop = FALSE])) / TT
Q_new[sr, sr] = if(rQi == 2L) Qsr else diag(diag(Qsr))
} else Q_new[sr, sr] = diag(r)
# Errors
A_new[rp1nr, rp1nr] = EZZ_FB_u / EZZ_BB_u # %r*% (1/EZZ_BB_u) # Same as EZZ_FB_u is diagonal...
if(rRi) {
if(rRi == 2L) stop("Cannot estimate unrestricted observation covariance matrix together with AR(1) serial correlation")
Q_new[rp1nr, rp1nr] = (diag(EZZ_u) - A_new[rp1nr, rp1nr] * EZZ_FB_u) / TT # tcrossprod(A_new[rp1nr, rp1nr, drop = FALSE], EZZ_FB_u) # Same as EZZ_FB_u is diagonal...
} else Q_new[rp1nr, rp1nr] = diag(n)
# E(X'X) & E(X'Z)
# Estimate matrix C using maximum likelihood approach
denom = numeric(n*r^2)
nom = matrix(0, n, r)
# nanYt = diag(~nanY(:,t));
# denom = denom + kron(Zsmooth(1:r,t+1)*Zsmooth(1:r,t+1)'+Vsmooth(1:r,1:r,t+1),nanYt);
# nom = nom + y(:,t)*Zsmooth(1:r,t+1)'-nanYt(:,i_idio)*(Zsmooth(r*p+1:end,t+1)*Zsmooth(1:r,t+1)'+Vsmooth(r*p+1:end,1:r,t+1));
for (t in seq_len(TT)) {
# select non-missing columns of Y for time t
nmiss = as.double(!W[t, ])
tmp = t(Zsmooth[t, sr])
# Add components to denom (same as EMBM.R)
tmp2 = crossprod(tmp) + Vsmooth[sr, sr, t]
dim(tmp2) = NULL
denom %+=% tcrossprod(tmp2, nmiss)
# add components to nom
nom %+=% (XW0[t, ] %*% tmp)
nom %-=% ((Zsmooth[t, rp1nr] %*% tmp + Vsmooth[rp1nr, sr, t]) * nmiss)
}
dim(denom) = c(r, r, n)
dnkron[dnkron_ind] = aperm.default(denom, c(1L, 3L, 2L))
# Solve for vec_C and reshape into C_new
vec_C = solve.default(dnkron, unattrib(nom)) # ainv() -> slower...
C_new = C
C_new[, sr] = vec_C
# R_new = zeros(n,n);
# for t=1:T
# nanYt = diag(~nanY(:,t));
# R_new = R_new + (y(:,t)-nanYt*C_new*Zsmooth(:,t+1))*(y(:,t)-nanYt*C_new*Zsmooth(:,t+1))'+
# nanYt*C_new*Vsmooth(:,:,t+1)*C_new'*nanYt+(eye(n)-nanYt)*R*(eye(n)-nanYt);
# end
# R_new = R_new/T;
# R_new = diag(diag(R_new));
# # Needed ??? -> Nope, gives same result as fixed R
# R_new = matrix(0, n, n)
# Rdg = R[dgind]
#
# for (t in seq_len(TT)) {
# nanYt = W[t, ]
# tmp = C_new * !nanYt
# R[dgind] = Rdg * nanYt # If R is not diagonal
# tmp2 = tmp %*% tcrossprod(Vsmooth[,, t], tmp)
# tmp2 %+=% tcrossprod(XW0[t, ] - tmp %*% Zsmooth[t, ])
# tmp2 %+=% R # If R is not diagonal
# # tmp2[dgind] = tmp2[dgind] + (Rdg * nanYt) # If R is diagonal...
# R_new %+=% tmp2
# }
#
# RR = R_new[dgind] / TT
# RR[RR < 1e-7] = 1e-7 # RR(RR<1e-2) = 1e-2;
# R_new = diag(RR)
# Set initial conditions
V_0_new = V_0
V_0_new[srp, srp] = Vsmooth0[srp, srp]
V_0_new[rp1nr, rp1nr] = diag(diag(Vsmooth0[rp1nr, rp1nr, drop = FALSE]))
return(list(A = A_new,
C = C_new,
Q = Q_new,
R = R, # R_new,
F_0 = drop(Zsmooth0),
P_0 = V_0_new,
loglik = kfs_res$loglik))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.