Nothing
test_that("SGS solution reduces to SGL when using constant weights, with even groups, with no intercept and no standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = rep(1:20,each=5)
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights, with even groups, with intercept and no standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = rep(1:20,each=5)
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights, with even groups, with intercept and standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = rep(1:20,each=5)
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with no intercept and no standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = c(rep(1:5, each=3),
rep(6:11, each=4),
rep(12:16, each=5),
rep(17:22,each=6))
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with intercept and no standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = c(rep(1:5, each=3),
rep(6:11, each=4),
rep(12:16, each=5),
rep(17:22,each=6))
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with intercept and standardisation", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = c(rep(1:5, each=3),
rep(6:11, each=4),
rep(12:16, each=5),
rep(17:22,each=6))
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL under logistic regression under constant weights", {
skip_if_not_installed("sgs")
n = 50
p = 100
X = MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=diag(1,p))
y = 1/(1+exp(-(X %*%rnorm(p,mean=0,sd=sqrt(10)) + rnorm(n,mean=0,sd=4))))
y = ifelse(y>0.5,1,0)
groups = rep(1:20,each=5)
lambda = 0.1
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="l2")
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p))
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights without screening", {
skip_if_not_installed("sgs")
n = 50
p = 100
groups = rep(1:20,each=5)
data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE)
X <- data$X
y <- data$y
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none", screen = FALSE)
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p), screen = FALSE)
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
test_that("SGS solution reduces to SGL when using constant weights without screening for logistic regression", {
skip_if_not_installed("sgs")
n = 50
p = 100
X = MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=diag(1,p))
y = 1/(1+exp(-(X %*%rnorm(p,mean=0,sd=sqrt(10)) + rnorm(n,mean=0,sd=4))))
y = ifelse(y>0.5,1,0)
groups = rep(1:20,each=5)
lambda=0.8
alpha = 0.3
sgl = dfr_sgl(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none", screen = FALSE)
sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p), screen = FALSE)
expect_equivalent(as.matrix(sgs$beta),
as.matrix(sgl$beta),
tol = 1e-3
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.