activation | Activation functions between network layers |
adjust_deg_free | Parameters to adjust effective degrees of freedom |
all_neighbors | Parameter to determine which neighbors to use |
bart-param | Parameters for BART models These parameters are used for... |
c5_parameters | Parameters for possible engine parameters for C5.0 |
class_weights | Parameters for class weights for imbalanced problems |
conditional_min_criterion | Parameters for possible engine parameters for partykit models |
cost | Support vector machine parameters |
cubist_parameters | Parameters for possible engine parameters for Cubist |
deg_free | Degrees of freedom (integer) |
degree | Parameters for exponents |
dials-package | dials: Tools for working with tuning parameters |
dist_power | Minkowski distance parameter |
dropout | Neural network parameters |
earth_parameters | Parameters for possible engine parameters for earth models |
encode_unit | Class for converting parameter values back and forth to the... |
finalize | Functions to finalize data-specific parameter ranges |
freq_cut | Near-zero variance parameters |
grid_max_entropy | Max-entropy and latin hypercube grids |
grid_regular | Create grids of tuning parameters |
grid_space_filling | Space-filling parameter grids |
harmonic_frequency | Harmonic Frequency |
initial_umap | Initialization method for UMAP |
Laplace | Laplace correction parameter |
learn_rate | Learning rate |
lightgbm_parameters | Possible engine parameters for lightbgm |
max_times | Word frequencies for removal |
max_tokens | Maximum number of retained tokens |
min_dist | Parameter for the effective minimum distance between embedded... |
min_unique | Number of unique values for pre-processing |
mixture | Mixture of penalization terms |
momentum | Gradient descent momentum parameter |
mtry | Number of randomly sampled predictors |
mtry_prop | Proportion of Randomly Selected Predictors |
neighbors | Number of neighbors |
new-param | Tools for creating new parameter objects |
num_breaks | Number of cut-points for binning |
num_clusters | Number of Clusters |
num_comp | Number of new features |
num_knots | Number of knots (integer) |
num_runs | Number of Computation Runs |
num_tokens | Parameter to determine number of tokens in ngram |
over_ratio | Parameters for class-imbalance sampling |
parameters | Information on tuning parameters within an object |
parameters_constr | Construct a new parameter set object |
penalty | Amount of regularization/penalization |
predictor_prop | Proportion of predictors |
prior_slab_dispersion | Bayesian PCA parameters |
prune_method | MARS pruning methods |
randomForest_parameters | Parameters for possible engine parameters for randomForest |
ranger_parameters | Parameters for possible engine parameters for ranger |
range_validate | Tools for working with parameter ranges |
rbf_sigma | Kernel parameters |
reexports | Objects exported from other packages |
regularization_method | Estimation methods for regularized models |
scheduler-param | Parameters for neural network learning rate schedulers These... |
select_features | Parameter to enable feature selection |
shrinkage_correlation | Parameters for possible engine parameters for sda models |
smoothness | Kernel Smoothness |
stop_iter | Early stopping parameter |
summary_stat | Rolling summary statistic for moving windows |
surv_dist | Parametric distributions for censored data |
survival_link | Survival Model Link Function |
target_weight | Amount of supervision parameter |
texthash | Text hashing parameters |
threshold | General thresholding parameter |
token | Token types |
trees | Parameter functions related to tree- and rule-based models. |
trim_amount | Amount of Trimming |
type_sum.param | Succinct summary of parameter objects |
unknown | Placeholder for unknown parameter values |
update.parameters | Update a single parameter in a parameter set |
validation_set_prop | Proportion of data used for validation |
value_validate | Tools for working with parameter values |
vocabulary_size | Number of tokens in vocabulary |
weight | Parameter for '"double normalization"' when creating token... |
weight_func | Kernel functions for distance weighting |
weight_scheme | Term frequency weighting methods |
window_size | Parameter for the moving window size |
xgboost_parameters | Parameters for possible engine parameters for xgboost |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.