AWvarTest: Test for equality of variance based on Ahn and Wang's (2013)...

Description Usage Arguments Value Author(s) References Examples

Description

Test for equality of variance based on Ahn and Wang's (2013) score test.

Usage

1
AWvarTest(value, group)

Arguments

value

numeric. Measurements to be compared between two groups.

group

numeric. Subject's group membership. Must be binary (i.e., taking values 0 or 1).

Value

A list with 6 elements:

U2

score statistic

varU2

estimated variance of the score statistic

T2

score statistic U2^2/varU2

pval

p-value of the score test

z

squared deviation of value from mean value

zbar

sample average of z

Author(s)

Xuan Li <lixuan0759@mathstat.yorku.ca>, Weiliang Qiu <stwxq@channing.harvard.edu>, Yuejiao Fu <yuejiao@mathstat.yorku.ca>, Xiaogang Wang <stevenw@mathstat.yorku.ca>

References

Ahn S. and Wang T. (2013) A Powerful Statistical Method for Indentifying Differentially Methylated Markers in Complex Diseases. Pacific Symposium on Biocomputing. 69-79.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
    # generate simulated data set from t distribution
    set.seed(1234567)
    es.sim = genSimData.tDistr(nCpGs = 100, nCases = 20, nControls = 20,
      df0 = 10, ncp0 = 0, df1 = 6, ncp1 = 2.393, testPara = "var",
      eps = 1.0e-3, applier = lapply) 
    print(es.sim)
    print(exprs(es.sim)[1:2,1:3])

    # do AW score test for the first probe
    dat = exprs(es.sim)
    pDat = pData(es.sim)
    print(pDat[1:2,])

    res = AWvarTest(value = dat[1,], group = pDat$memSubj)
    print(names(res))
    print(res)

diffMeanVar documentation built on May 2, 2019, 2:54 a.m.