FTest: Test for equality of variance based on F test

Description Usage Arguments Value Author(s) References Examples

Description

Test for equality of variance based on F test.

Usage

1
FTest(value, group)

Arguments

value

numeric. Measurements to be compared between two groups.

group

numeric. Subject's group membership. Must be binary (i.e., taking values 0 or 1).

Value

A list with 2 elements:

stat

test statistic value

pval

pvalue of the score test

Author(s)

Xuan Li <lixuan0759@mathstat.yorku.ca>, Weiliang Qiu <stwxq@channing.harvard.edu>, Yuejiao Fu <yuejiao@mathstat.yorku.ca>, Xiaogang Wang <stevenw@mathstat.yorku.ca>

References

Li X, Qiu W, Morrow J, DeMeo DL, Weiss ST, Fu Y, Wang X. (2015) A Comparative Study of Tests for Homogeneity of Variances with Application to DNA Methylation Data. PLoS ONE 10(12): e0145295. PMID: 26683022

Qiu W, Li X, Morrow J, DeMeo DL, Weiss ST, Wang X, Fu Y. New Score Tests for Equality of Variances in the Application of DNA Methylation Data Analysis [Version 2]. Insights Genet Genomics. (2017) 1: 3.2

Li X, Qiu W, Fu Y, Wang X. (2017) Robust Joint Score Tests in the Application of DNA Methylation Data Analysis. In submission.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
    # generate simulated data set from t distribution
    set.seed(1234567)
    es.sim = genSimData.tDistr(nCpGs = 100, nCases = 20, nControls = 20,
      df0 = 10, ncp0 = 0, df1 = 6, ncp1 = 2.393, testPara = "var",
      eps = 1.0e-3, applier = lapply) 
    print(es.sim)
    print(exprs(es.sim)[1:2,1:3])

    # do AW score test for the first probe
    dat = exprs(es.sim)
    pDat = pData(es.sim)
    print(pDat[1:2,])

    res = FTest(value = dat[1,], group = pDat$memSubj)
    print(names(res))
    print(res)

diffMeanVar documentation built on May 2, 2019, 2:54 a.m.