Description Usage Arguments Value Author(s) References Examples
Test for equality of variance based on improved Ahn and Wang's (2013) score test.
1 | iAWvar.TrimMean(value, group, trim.alpha = 0.25)
|
value |
numeric. Measurements to be compared between two groups. |
group |
numeric. Subject's group membership. Must be binary (i.e., taking values 0 or 1). |
trim.alpha |
numeric. Indicating proportion of data points to be trimmed from both ends before calculating sample mean. |
A list with 6 elements:
U2 |
score statistic |
varU2 |
estimated variance of the score statistic |
T2 |
score statistic U2^2/varU2 |
pval |
pvalue of the score test |
z |
absolute deviation of |
zbar |
sample average of |
Xuan Li <lixuan0759@mathstat.yorku.ca>, Weiliang Qiu <stwxq@channing.harvard.edu>, Yuejiao Fu <yuejiao@mathstat.yorku.ca>, Xiaogang Wang <stevenw@mathstat.yorku.ca>
Li X, Qiu W, Morrow J, DeMeo DL, Weiss ST, Fu Y, Wang X. (2015) A Comparative Study of Tests for Homogeneity of Variances with Application to DNA Methylation Data. PLoS ONE 10(12): e0145295. PMID: 26683022
Qiu W, Li X, Morrow J, DeMeo DL, Weiss ST, Wang X, Fu Y. New Score Tests for Equality of Variances in the Application of DNA Methylation Data Analysis [Version 2]. Insights Genet Genomics. (2017) 1: 3.2
Li X, Qiu W, Fu Y, Wang X. (2017) Robust Joint Score Tests in the Application of DNA Methylation Data Analysis. In submission.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # generate simulated data set from t distribution
set.seed(1234567)
es.sim = genSimData.tDistr(nCpGs = 100, nCases = 20, nControls = 20,
df0 = 10, ncp0 = 0, df1 = 6, ncp1 = 2.393, testPara = "var",
eps = 1.0e-3, applier = lapply)
print(es.sim)
print(exprs(es.sim)[1:2,1:3])
# do AW score test for the first probe
dat = exprs(es.sim)
pDat = pData(es.sim)
print(pDat[1:2,])
res = iAWvar.TrimMean(value = dat[1,], group = pDat$memSubj)
print(names(res))
print(res)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.