scoreTestMean: Test for equality of mean based on the score test of logistic...

Description Usage Arguments Value Author(s) References Examples

Description

Test for equality of mean based on the score test of logistic regression.

Usage

1

Arguments

value

numeric. Measurements to be compared between two groups.

group

numeric. Subject's group membership. Must be binary (i.e., takine values 0 or 1).

Value

A list with 6 elements:

U1

score statistic

varU1

estimated variance of the score statistic

T1

score statistic U1^2/varU1

pval

pvalue of the score test

x

equal to the input value

xbar

sample average of x

Author(s)

Xuan Li <lixuan0759@mathstat.yorku.ca>, Weiliang Qiu <stwxq@channing.harvard.edu>, Yuejiao Fu <yuejiao@mathstat.yorku.ca>, Xiaogang Wang <stevenw@mathstat.yorku.ca>

References

Ahn S. and Wang T. (2013) A Powerful Statistical Method for Indentifying Differentially Methylated Markers in Complex Diseases. Pacific Symposium on Biocomputing. 69-79.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
    # generate simulated data set from t distribution
    set.seed(1234567)
    es.sim = genSimData.tDistr(nCpGs = 100, nCases = 20, nControls = 20,
      df0 = 10, ncp0 = 0, df1 = 6, ncp1 = 2.393, testPara = "var",
      eps = 1.0e-3, applier = lapply) 
    print(es.sim)
    print(exprs(es.sim)[1:2,1:3])

    # do AW score test for the first probe
    dat = exprs(es.sim)
    pDat = pData(es.sim)
    print(pDat[1:2,])

    res = scoreTestMean(value = dat[1,], group = pDat$memSubj)
    print(names(res))
    print(res)

diffMeanVar documentation built on May 2, 2019, 2:54 a.m.