Nothing
#' t-Distributed Stochastic Neighborhood Embedding
#'
#' An S4 Class for t-SNE.
#'
#' t-SNE is a method that uses Kullback-Leibler divergence between the
#' distance matrices in high and low-dimensional space to embed the
#' data. The method is very well suited to visualize complex
#' structures in low dimensions.
#'
#' @template dimRedMethodSlots
#'
#' @template dimRedMethodGeneralUsage
#'
#' @section Parameters:
#' t-SNE can take the following parameters:
#' \describe{
#' \item{d}{A distance function, defaults to euclidean distances}
#' \item{perplexity}{The perplexity parameter, roughly equivalent to neighborhood size.}
#' \item{theta}{Approximation for the nearest neighbour search, large values are more inaccurate.}
#' \item{ndim}{The number of embedding dimensions.}
#' }
#'
#' @section Implementation:
#'
#' Wraps around \code{\link[Rtsne]{Rtsne}}, which is very well
#' documented. Setting \code{theta = 0} does a normal t-SNE, larger
#' values for \code{theta < 1} use the Barnes-Hut algorithm which
#' scales much nicer with data size. Larger values for perplexity take
#' larger neighborhoods into account.
#'
#' @references
#' Maaten, L. van der, 2014. Accelerating t-SNE using Tree-Based
#' Algorithms. Journal of Machine Learning Research 15, 3221-3245.
#'
#' van der Maaten, L., Hinton, G., 2008. Visualizing Data using
#' t-SNE. J. Mach. Learn. Res. 9, 2579-2605.
#'
#' @examples
#' \dontrun{
#' dat <- loadDataSet("3D S Curve", n = 300)
#' emb <- embed(dat, "tSNE", perplexity = 80)
#' plot(emb, type = "2vars")
#' }
#' @include dimRedResult-class.R
#' @include dimRedMethod-class.R
#' @family dimensionality reduction methods
#' @export tSNE
#' @exportClass tSNE
tSNE <- setClass(
"tSNE",
contains = "dimRedMethod",
prototype = list(
stdpars = list(d = stats::dist,
perplexity = 30,
theta = 0.5,
ndim = 2),
fun = function (data, pars,
keep.org.data = TRUE) {
chckpkg("Rtsne")
meta <- data@meta
orgdata <- if (keep.org.data) data@data else NULL
indata <- data@data
outdata <- Rtsne::Rtsne(pars$d(indata),
perplexity = pars$perplexity,
theta = pars$theta,
dims = pars$ndim)$Y
colnames(outdata) <- paste0("tSNE", 1:ncol(outdata))
return(new(
"dimRedResult",
data = new("dimRedData",
data = outdata,
meta = meta),
org.data = orgdata,
has.org.data = keep.org.data,
method = "tsne",
pars = pars
))
},
requires = c("Rtsne"))
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.