| iris.l1.cluster | R Documentation |
The l1 clustering algorithm from the clusterpath package was applied to the iris dataset and the breakpoints in the solution path are stored in this data frame.
data(iris.l1.cluster)
A data frame with 9643 observations on the following 8 variables.
rowa numeric vector: row of the original iris data matrix
Speciesa factor with levels setosa
versicolor virginica: Species from corresponding row
alphaa numeric vector: the value of the optimal solution.
lambdaa numeric vector: the regularization parameter (ie point in the path).
cola factor with levels Sepal.Length
Sepal.Width Petal.Length Petal.Width: column
from the original iris data.
gammaa factor with levels 0: parameter from clustering.
norma factor with levels 1 parameter from clustering.
solvera factor with levels path algorithm used for
clustering.
clusterpath package
clusterpath article
data(iris.l1.cluster,package="directlabels")
iris.l1.cluster$y <- iris.l1.cluster$alpha
if(require(ggplot2)){
p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+
geom_line(alpha=1/4)+
facet_grid(col~.)
p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda))
print(direct.label(p2,list(first.points,get.means)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.