| system_classes | R Documentation |
System classes
Classes with data and functionality describing systems of models.
system_base-class: System base class
system_basic-class: Basic model's system class
system_deterministic_adjustment-class: Deterministic adjustment model's system class
system_directional-class: Directional system class
system_equilibrium-class: Equilibrium model's system class
system_stochastic_adjustment-class: Stochastic adjustment model's system class
demandDemand equation.
supplySupply equation.
correlated_shocksBoolean indicating whether the shock of the equations of the system are correlated.
sample_separationBoolean indicating whether the sample of the system is separated.
quantity_vectorA vector with the system's observed quantities.
price_vectorA vector with the system's observed prices.
rhoCorrelation coefficient of demand and supply shocks.
rho1ρ_{1} = \frac{1}{√{1 - ρ}}
rho2ρ_{2} = ρρ_{1}
lhLikelihood values for each observation.
gammaExcess demand coefficient.
deltaδ = γ + α_{d} - α_{s}
mu_Pμ_{P} = \mathrm{E}P
var_PV_{P} = \mathrm{Var}P
sigma_Pσ_{P} = √{V_{P}}
h_Ph_{P} = \frac{P - μ_{P}}{σ_{P}}
lagged_price_vectorA vector with the system's observed prices lagged by one date.
mu_Qμ_{Q} = \mathrm{E}Q
var_QV_{Q} = \mathrm{Var}Q
sigma_Qσ_{Q} = √{V_{Q}}
h_Qh_{Q} = \frac{Q - μ_{Q}}{σ_{Q}}
rho_QPρ_{QP} = \frac{\mathrm{Cov}(Q,P)}{√{\mathrm{Var}Q\mathrm{Var}P}}
rho_1QPρ_{1,QP} = \frac{1}{√{1 - ρ_{QP}^2}}
rho_2QPρ_{2,QP} = ρ_{QP}ρ_{1,QP}
z_QPz_{QP} = \frac{h_{Q} - ρ_{QP}h_{P}}{√{1 - ρ_{QP}^2}}
z_PQz_{PQ} = \frac{h_{P} - ρ_{PQ}h_{Q}}{√{1 - ρ_{PQ}^2}}
price_equationPrice equation.
zetaζ = √{1 - ρ_{DS}^2 - ρ_{DP}^2 - ρ_{SP}^2 + 2 ρ_DP ρ_DS ρ_SP}
zeta_DDζ_{DD} = 1 - ρ_{SP}^2
zeta_DSζ_{DS} = ρ_{DS} - ρ_{DP}ρ_{SP}
zeta_DPζ_{DP} = ρ_{DP} - ρ_{DS}ρ_{SP}
zeta_SSζ_{SS} = 1 - ρ_{DP}^2
zeta_SPζ_{SP} = ρ_{SP} - ρ_{DS}ρ_{DP}
zeta_PPζ_{PP} = 1 - ρ_{DS}^2
mu_Dμ_{D} = \mathrm{E}D
var_DV_{D} = \mathrm{Var}D
sigma_Dσ_{D} = √{V_{D}}
mu_Sμ_{S} = \mathrm{E}S
var_SV_{S} = \mathrm{Var}S
sigma_Sσ_{S} = √{V_{S}}
sigma_DPσ_{DP} = \mathrm{Cov}(D, P)
sigma_DSσ_{DS} = \mathrm{Cov}(D, S)
sigma_SPσ_{SP} = \mathrm{Cov}(S, P)
rho_DSρ_{DS} = \frac{\mathrm{Cov}(D,S)}{√{\mathrm{Var}D\mathrm{Var}S}}
rho_DPρ_{DP} = \frac{\mathrm{Cov}(D,P)}{√{\mathrm{Var}D\mathrm{Var}P}}
rho_SPρ_{SP} = \frac{\mathrm{Cov}(S,P)}{√{\mathrm{Var}S\mathrm{Var}P}}
h_Dh_{D} = \frac{D - μ_{D}}{σ_{D}}
h_Sh_{S} = \frac{S - μ_{S}}{σ_{S}}
z_DPz_{DP} = \frac{h_{D} - ρ_{DP}h_{P}}{√{1 - ρ_{DP}^2}}
z_PDz_{PD} = \frac{h_{P} - ρ_{PD}h_{D}}{√{1 - ρ_{PD}^2}}
z_SPz_{SP} = \frac{h_{S} - ρ_{SP}h_{P}}{√{1 - ρ_{SP}^2}}
z_PSz_{PS} = \frac{h_{P} - ρ_{PS}h_{S}}{√{1 - ρ_{PS}^2}}
omega_Dω_{D} = \frac{h_{D}ζ_{DD} - h_{S}ζ_{DS} - h_{P}ζ_{DP}}{ζ_{DD}}
omega_Sω_{S} = \frac{h_{S}ζ_{SS} - h_{S}ζ_{SS} - h_{P}ζ_{SP}}{ζ_{SS}}
w_Dw_{D} = - \frac{h_{D}^2 - 2 h_{D} h_{P} ρ_{DP} + h_{P}^2}{2ζ_{SS}}
w_Sw_{S} = - \frac{h_{S}^2 - 2 h_{S} h_{P} ρ_{SP} + h_{P}^2}{2ζ_{DD}}
psi_Dψ_{D} = φ≤ft(\frac{ω_{D}}{ζ}\right)
psi_Sψ_{S} = φ≤ft(\frac{ω_{S}}{ζ}\right)
Psi_DΨ_{D} = 1 - Φ≤ft(\frac{ω_{D}}{ζ}\right)
Psi_SΨ_{S} = 1 - Φ≤ft(\frac{ω_{S}}{ζ}\right)
g_Dg_{D} = \frac{ψ_{D}}{Ψ_{D}}
g_Sg_{S} = \frac{ψ_{S}}{Ψ_{S}}
rho_dsShadows rho in the diseq_stochastic_adjustment model
rho_dpCorrelation of demand and price equations' shocks.
rho_spCorrelation of supply and price equations' shocks.
L_DLikelihood conditional on excess supply.
L_SLikelihood conditional on excess demand.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.