Nothing
#' Lists Available Transformation Functions
#'
#' @return character vector
#' @export
#' @autoglobal
#' @examples
#' f_list()
#' @family tsl_transformation
f_list <- function(){
f_funs <- ls(
name = "package:distantia",
pattern = "^f_"
)
f_funs[f_funs != "f_list"]
}
# Trend Adjustments ----
#' Data Transformation: Linear Trend of Zoo Time Series
#'
#' @description
#' Fits a linear model on each column of a zoo object using time as a predictor, and predicts the outcome.
#'
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param center (required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_trend_linear(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_trend_linear <- function(
x = NULL,
center = TRUE,
...
) {
x_data <- zoo::coredata(x, drop = FALSE)
m <- stats::lm(
formula = x_data ~ zoo::index(x)
)
#predict linear trend
y <- stats::predict(m)
if(center == TRUE){
y <- y - mean(x_data)
}
y <- as.matrix(y)
dimnames(y)[[2]] <- dimnames(x)[[2]]
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' Data Transformation: Polynomial Linear Trend of Zoo Time Series
#'
#' @description
#' Fits a polynomial linear model on each column of a zoo object using time as a predictor, and predicts the outcome to return the polynomial trend of the time series. This method is a useful alternative to [f_trend_linear] when the overall. trend of the time series does not follow a straight line.
#'
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param center (required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
#' @param degree (optional, integer) Degree of the polynomial. Default: 2
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_trend_poly(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_trend_poly <- function(
x = NULL,
degree = 2,
center = TRUE,
...
) {
x_data <- zoo::coredata(x, drop = FALSE)
m <- stats::lm(
formula = x_data ~ stats::poly(
x = zoo::index(x),
degree = degree,
raw = TRUE
)
)
#predict linear trend
y <- stats::predict(m)
if(center == FALSE){
y <- y + mean(x_data)
}
y <- as.matrix(y)
dimnames(y)[[2]] <- dimnames(x)[[2]]
# recreate zoo
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' Data Transformation: Linear Detrending of Zoo Time Series
#'
#' @description
#' Fits a linear model on each column of a zoo object using time as a predictor, predicts the outcome, and subtracts it from the original data to return a detrended time series. This method might not be suitable if the input data is not seasonal and has a clear trend, so please be mindful of the limitations of this function when applied blindly.
#'
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param center (required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_detrend_linear(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_detrend_linear <- function(
x = NULL,
center = TRUE,
...
) {
x_data <- zoo::coredata(x, drop = FALSE)
m <- stats::lm(
formula = x_data ~ zoo::index(x)
)
#predict linear trend
x_trend <- stats::predict(m)
#subtract trend
y <- x_data - x_trend
if(center == FALSE){
y <- y + mean(x_data)
}
y <- as.matrix(y)
dimnames(y)[[2]] <- dimnames(x)[[2]]
# recreate zoo
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' Data Transformation: Polynomial Linear Detrending of Zoo Time Series
#'
#' @description
#' Fits a polynomial linear model on each column of a zoo object using time as a predictor, predicts the outcome, and subtracts it from the original data to return a detrended time series. This method is a useful alternative to [f_detrend_linear] when the overall trend of the time series does not follow a straight line.
#'
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param center (required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
#' @param degree (optional, integer) Degree of the polynomial. Default: 2
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_detrend_poly(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_detrend_poly <- function(
x = NULL,
degree = 2,
center = TRUE,
...
) {
x_data <- zoo::coredata(x, drop = FALSE)
m <- stats::lm(
formula = x_data ~ stats::poly(
x = zoo::index(x),
degree = degree,
raw = TRUE
)
)
#predict linear trend
x_trend <- stats::predict(m)
#subtract trend
y <- x_data - x_trend
if(center == FALSE){
y <- y + mean(x_data)
}
y <- as.matrix(y)
dimnames(y)[[2]] <- dimnames(x)[[2]]
# recreate zoo
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' Data Transformation: Detrending and Differencing
#'
#' @description
#' Performs differencing to remove trends from a zoo time series, isolating short-term fluctuations by subtracting values at specified lags. The function preserves the original index and metadata, with an option to center the output around the mean of the original series. Suitable for preprocessing time series data to focus on random fluctuations unrelated to overall trends.
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param lag (optional, integer)
#' @param center (required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y_lag1 <- f_detrend_difference(
#' x = x,
#' lag = 1
#' )
#'
#' y_lag5 <- f_detrend_difference(
#' x = x,
#' lag = 5
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y_lag1)
#' zoo_plot(y_lag5)
#' }
#' @family tsl_transformation
f_detrend_difference <- function(
x = NULL,
lag = 1,
center = TRUE,
...
) {
x_data <- zoo::coredata(x, drop = FALSE)
y <- diff(
x = as.matrix(x_data),
lag = as.integer(lag[1])
)
first.row <- matrix(
data = 0,
nrow = 1,
ncol = ncol(x_data),
dimnames = list(
"1",
colnames(x_data)
)
)
y <- rbind(
first.row,
y
)
if(center == FALSE){
y <- y + mean(x_data)
}
y <- as.matrix(y)
dimnames(y)[[2]] <- dimnames(x)[[2]]
y <- zoo::zoo(
x = as.matrix(y),
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
# Compositional Transformations ----
#' Data Transformation: Rowwise Proportions
#'
#' @inheritParams f_hellinger
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_proportion(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_proportion <- function(
x = NULL,
...
){
y <- sweep(
x = x,
MARGIN = 1,
STATS = rowSums(x),
FUN = "/"
)
y
}
#' Data Transformation: Rowwise Square Root of Proportions
#'
#' @inheritParams f_hellinger
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_proportion_sqrt(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_proportion_sqrt <- function(
x = NULL,
...
){
f_proportion(x)^0.5
}
#' Data Transformation: Rowwise Percentages
#'
#' @inheritParams f_hellinger
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_percent(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_percent <- function(
x = NULL,
...
){
f_proportion(x)*100
}
#' Data Transformation: Rowwise Hellinger Transformation
#'
#' @description
#' Transforms the input zoo object to proportions via [f_proportion] and then applies the Hellinger transformation.
#'
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param ... (optional, additional arguments) Ignored in this function.
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(
#' cols = 5,
#' data_range = c(0, 500)
#' )
#'
#' y <- f_hellinger(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_hellinger <- function(
x = NULL,
...
){
y <- f_proportion(x = x)
y <- sqrt(
sweep(
x = y,
MARGIN = 1,
STATS = rowSums(y),
FUN = "/"
)
)
y
}
#' Data Transformation: Rowwise Centered Log-Ratio
#'
#' @description
#' Centers log-transformed proportions by subtracting the geometric mean of the row.
#'
#' @inheritParams f_hellinger
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(
#' cols = 5,
#' data_range = c(0, 500)
#' )
#'
#' y <- f_clr(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_clr <- function(
x = NULL,
...
) {
x.log <- f_log(x = x)
y <- sweep(
x = x.log,
MARGIN = 1,
STATS = rowMeans(x.log),
FUN = "-"
)
y
}
#' Data Transformation: Log
#'
#' @description
#' Applies logarithmic transformation to data to reduce skewness.
#'
#' @inheritParams f_hellinger
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(
#' cols = 5,
#' data_range = c(0, 500)
#' )
#'
#' y <- f_log(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_log <- function(
x = NULL,
...
){
y <- log(x)
y <- as.matrix(y)
y[is.infinite(y)] <- 0
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' Transform Zoo Object to Binary
#'
#' @description Converts a zoo object to binary (1 and 0) based on a given threshold.
#'
#' @inheritParams f_hellinger
#' @param threshold (required, numeric) Values greater than this number become 1, others become 0. Set to the mean of the time series by default. Default: NULL
#' @return zoo object
#' @autoglobal
#' @export
#' @examples
#' x <- zoo_simulate(
#' data_range = c(0, 1)
#' )
#'
#' y <- f_binary(
#' x = x,
#' threshold = 0.5
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_binary <- function(
x = NULL,
threshold = NULL
){
if(is.null(threshold)){
threshold <- mean(x)
}
y <- ifelse(
test = x > threshold,
yes = 1,
no = 0
)
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
# Scale Adjustments ----
#' Data Transformation: Global Centering and Scaling
#'
#' @description
#' Scaling and/or centering by variable using the mean and standard deviation computed across all time series. Global scaling helps dynamic time warping take variable offsets between time series into account.
#'
#' @param x (required, zoo object) Zoo time series object to transform.
#' @param center (optional, logical or numeric vector) Triggers centering if TRUE. Default: TRUE
#' @param scale (optional, logical or numeric vector) Triggers scaling if TRUE. Default: TRUE
#' @param .global (optional, logical) Used to trigger global scaling within [tsl_transform()].
#' @param ... (optional, additional arguments) Ignored in this function.
#'
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate()
#'
#' y <- f_scale_global(
#' x = x
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_scale_global <- function(
x = NULL,
center = TRUE,
scale = TRUE,
.global,
...
){
y <- f_scale_local(
x = x,
center = center,
scale = scale
)
}
#' Data Transformation: Local Centering and Scaling
#'
#' @description
#' Scaling and/or centering by variable and time series. Local scaling helps dynamic time warping focus entirely on shape comparisons.
#'
#' @inherit f_scale_global
#' @export
#' @autoglobal
#' @family tsl_transformation
f_scale_local <- function(
x = NULL,
center = TRUE,
scale = TRUE,
...
){
y <- scale(
x = x,
center = center,
scale = scale
)
y <- as.matrix(y)
y[is.nan(y)] <- 0
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' @title Data Transformation: Local Rescaling of to a New Range
#' @inherit f_rescale_global
#' @export
#' @autoglobal
#' @family tsl_transformation
f_rescale_local <- function(
x = NULL,
new_min = 0,
new_max = 1,
old_min = NULL,
old_max = NULL,
...
){
y <- zoo::coredata(x)
if(!is.matrix(y)){
y <- as.matrix(y)
}
if(length(new_min) < ncol(y)){
new_min <- rep(x = new_min, times = ncol(y))
}
if(length(new_max) < ncol(y)){
new_max <- rep(x = new_max, times = ncol(y))
}
for(i in seq_len(ncol(y))){
y[, i] <- utils_rescale_vector(
x = y[, i],
new_min = new_min[i],
new_max = new_max[i],
old_min = old_min[i],
old_max = old_max[i]
)
}
y <- zoo::zoo(
x = y,
order.by = zoo::index(x)
) |>
zoo_name_set(
name = attributes(x)$name
)
y
}
#' @title Data Transformation: Global Rescaling of to a New Range
#' @param x (required, zoo object) Time Series. Default: `NULL`
#' @param new_min (optional, numeric) New minimum value. Default: `0`
#' @param new_max (optional_numeric) New maximum value. Default: `1`
#' @param old_min (optional, numeric) Old minimum value. Default: `NULL`
#' @param old_max (optional_numeric) Old maximum value. Default: `NULL`
#' @param .global (optional, logical) Used to trigger global scaling within [tsl_transform()].
#' @param ... (optional, additional arguments) Ignored in this function.
#' @return zoo object
#' @export
#' @autoglobal
#' @examples
#' x <- zoo_simulate(cols = 2)
#'
#' y <- f_rescale_global(
#' x = x,
#' new_min = 0,
#' new_max = 100
#' )
#'
#' if(interactive()){
#' zoo_plot(x)
#' zoo_plot(y)
#' }
#' @family tsl_transformation
f_rescale_global <- function(
x = NULL,
new_min = 0,
new_max = 1,
old_min = NULL,
old_max = NULL,
.global,
...
){
y <- f_rescale_local(
x = x,
new_min = new_min,
new_max = new_max,
old_min = old_min,
old_max = old_max
)
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.