Nothing
#' Create a Generalised Extreme Value (GEV) distribution
#'
#' The GEV distribution arises from the Extremal Types Theorem, which is rather
#' like the Central Limit Theorem (see `\link{Normal}`) but it relates to
#' the *maximum* of \eqn{n} i.i.d. random variables rather than to the sum.
#' If, after a suitable linear rescaling, the distribution of this maximum
#' tends to a non-degenerate limit as \eqn{n} tends to infinity then this limit
#' must be a GEV distribution. The requirement that the variables are independent
#' can be relaxed substantially. Therefore, the GEV distribution is often used
#' to model the maximum of a large number of random variables.
#'
#' @param mu The location parameter, written \eqn{\mu} in textbooks.
#' `mu` can be any real number. Defaults to `0`.
#' @param sigma The scale parameter, written \eqn{\sigma} in textbooks.
#' `sigma` can be any positive number. Defaults to `1`.
#' @param xi The shape parameter, written \eqn{\xi} in textbooks.
#' `xi` can be any real number. Defaults to `0`, which corresponds to a
#' Gumbel distribution.
#'
#' @return A `GEV` object.
#' @export
#'
#' @family continuous distributions
#'
#' @details
#'
#' We recommend reading this documentation on
#' <https://alexpghayes.github.io/distributions3/>, where the math
#' will render with additional detail and much greater clarity.
#'
#' In the following, let \eqn{X} be a GEV random variable with location
#' parameter `mu` = \eqn{\mu}, scale parameter `sigma` = \eqn{\sigma} and
#' shape parameter `xi` = \eqn{\xi}.
#'
#' **Support**:
#' \eqn{(-\infty, \mu - \sigma / \xi)} for \eqn{\xi < 0};
#' \eqn{(\mu - \sigma / \xi, \infty)} for \eqn{\xi > 0};
#' and \eqn{R}, the set of all real numbers, for \eqn{\xi = 0}.
#'
#' **Mean**: \eqn{\mu + \sigma[\Gamma(1 - \xi) - 1]/\xi} for
#' \eqn{\xi < 1, \xi \neq 0}{\xi < 1, \xi != 0};
#' \eqn{\mu + \sigma\gamma} for \eqn{\xi = 0}, where \eqn{\gamma}
#' is Euler's constant, approximately equal to 0.57722; undefined otherwise.
#'
#' **Median**: \eqn{\mu + \sigma[(\ln 2) ^ {-\xi} - 1]/\xi}{%
#' \mu + \sigma[(ln 2)^(-\xi) - 1] / \xi} for \eqn{\xi \neq 0}{\xi != 0};
#' \eqn{\mu - \sigma\ln(\ln 2)}{\mu - \sigma ln(ln 2)} for \eqn{\xi = 0}.
#'
#' **Variance**:
#' \eqn{\sigma^2 [\Gamma(1 - 2 \xi) - \Gamma(1 - \xi)^2] / \xi^2}
#' for \eqn{\xi < 1 / 2, \xi \neq 0}{\xi < 1 / 2, \xi != 0};
#' \eqn{\sigma^2 \pi^2 / 6} for \eqn{\xi = 0}; undefined otherwise.
#'
#' **Probability density function (p.d.f)**:
#'
#' If \eqn{\xi \neq 0}{\xi is not equal to 0} then
#' \deqn{f(x) = \sigma ^ {-1} [1 + \xi (x - \mu) / \sigma] ^ {-(1 + 1/\xi)}%
#' \exp\{-[1 + \xi (x - \mu) / \sigma] ^ {-1/\xi} \}}{%
#' f(x) = (1 / \sigma) [1 + \xi (x - \mu) / \sigma] ^ {-(1 + 1/\xi)}%
#' exp{ -[1 + \xi (x - \mu) / \sigma] ^ (-1/\xi)}}
#' for \eqn{1 + \xi (x - \mu) / \sigma > 0}. The p.d.f. is 0 outside the
#' support.
#'
#' In the \eqn{\xi = 0} (Gumbel) special case
#' \deqn{f(x) = \sigma ^ {-1} \exp[-(x - \mu) / \sigma]%
#' \exp\{-\exp[-(x - \mu) / \sigma] \}}{%
#' f(x) = (1 / \sigma) exp[-(x - \mu) / \sigma]%
#' exp{-exp[-(x - \mu) / \sigma]}}
#' for \eqn{x} in \eqn{R}, the set of all real numbers.
#'
#' **Cumulative distribution function (c.d.f)**:
#'
#' If \eqn{\xi \neq 0}{\xi is not equal to 0} then
#' \deqn{F(x) = \exp\{-[1 + \xi (x - \mu) / \sigma] ^ {-1/\xi} \}}{%
#' F(x) = exp{ -[1 + \xi (x - \mu) / \sigma] ^ (-1/\xi)} }
#' for \eqn{1 + \xi (x - \mu) / \sigma > 0}. The c.d.f. is 0 below the
#' support and 1 above the support.
#'
#' In the \eqn{\xi = 0} (Gumbel) special case
#' \deqn{F(x) = \exp\{-\exp[-(x - \mu) / \sigma] \}}{%
#' F(x) = exp{ - exp[-(x - \mu) / \sigma]} }
#' for \eqn{x} in \eqn{R}, the set of all real numbers.
#'
#' @examples
#'
#' set.seed(27)
#'
#' X <- GEV(1, 2, 0.1)
#' X
#'
#' random(X, 10)
#'
#' pdf(X, 0.7)
#' log_pdf(X, 0.7)
#'
#' cdf(X, 0.7)
#' quantile(X, 0.7)
#'
#' cdf(X, quantile(X, 0.7))
#' quantile(X, cdf(X, 0.7))
GEV <- function(mu = 0, sigma = 1, xi = 0) {
if (any(sigma <= 0)) {
stop("sigma must be positive")
}
stopifnot(
"parameter lengths do not match (only scalars are allowed to be recycled)" =
length(mu) == length(sigma) & length(mu) == length(xi) |
sum(c(length(mu) == 1, length(sigma) == 1, length(xi) == 1)) >= 2 |
length(mu) == length(sigma) & length(xi) == 1 |
length(mu) == length(xi) & length(sigma) == 1 |
length(sigma) == length(xi) & length(mu) == 1
)
d <- data.frame(mu = mu, sigma = sigma, xi = xi)
class(d) <- c("GEV", "distribution")
d
}
# don't export
g <- function(d, k) gamma(1 - k * d$xi)
#' @export
mean.GEV <- function(x, ...) {
rlang::check_dots_used()
euler <- -digamma(1)
rval <- ifelse(x$xi == 0,
x$mu + x$sigma * euler,
ifelse(x$xi < 1,
x$mu + x$sigma * (gamma(1 - x$xi) - 1) / x$xi,
Inf
)
)
setNames(rval, names(x))
}
#' @export
variance.GEV <- function(x, ...) {
euler <- -digamma(1)
rval <- ifelse(x$xi == 0,
x$sigma^2 * pi^2 / 6,
ifelse(x$xi < 1 / 2,
x$sigma^2 * (g(x, 2) - g(x, 1)^2) / x$xi^2,
Inf
)
)
setNames(rval, names(x))
}
#' @export
skewness.GEV <- function(x, ...) {
rval <- ifelse(x$xi == 1,
# no useful zeta fn without adding a dependency
{
zeta3 <- 1.202056903159594014596
12 * sqrt(6) * zeta3 / pi^3
},
ifelse(x$xi < 1 / 3,
{
s <- sign(x$xi)
g1 <- g(x, 1)
g2 <- g(x, 2)
g3 <- g(x, 3)
s * (g3 - 3 * g1 * g2 + 2 * g1^3) / (g2 - g1^2)^(3 / 2)
},
Inf
)
)
setNames(rval, names(x))
}
#' @export
kurtosis.GEV <- function(x, ...) {
rval <- ifelse(x$xi == 0,
12 / 5,
ifelse(x$xi < 1 / 3,
{
g1 <- g(x, 1)
g2 <- g(x, 2)
g3 <- g(x, 3)
g4 <- g(x, 4)
(g4 - 4 * g3 * g1 - 3 * g2^2 + 12 * g2 * g1^2 - 6 * g1^4) / (g2 - g1^2)^2
},
Inf
)
)
setNames(rval, names(x))
}
#' Draw a random sample from a GEV distribution
#'
#' @inherit GEV examples
#'
#' @param x A `GEV` object created by a call to [GEV()].
#' @param n The number of samples to draw. Defaults to `1L`.
#' @param drop logical. Should the result be simplified to a vector if possible?
#' @param ... Unused. Unevaluated arguments will generate a warning to
#' catch mispellings or other possible errors.
#'
#' @return In case of a single distribution object or `n = 1`, either a numeric
#' vector of length `n` (if `drop = TRUE`, default) or a `matrix` with `n` columns
#' (if `drop = FALSE`).
#' @export
#'
random.GEV <- function(x, n = 1L, drop = TRUE, ...) {
n <- make_positive_integer(n)
if (n == 0L) {
return(numeric(0L))
}
FUN <- function(at, d) revdbayes::rgev(n = at, loc = d$mu, scale = d$sigma, shape = d$xi)
apply_dpqr(d = x, FUN = FUN, at = n, type = "random", drop = drop)
}
#' Evaluate the probability mass function of a GEV distribution
#'
#' @inherit GEV examples
#'
#' @param d A `GEV` object created by a call to [GEV()].
#' @param x A vector of elements whose probabilities you would like to
#' determine given the distribution `d`.
#' @param drop logical. Should the result be simplified to a vector if possible?
#' @param elementwise logical. Should each distribution in \code{d} be evaluated
#' at all elements of \code{x} (\code{elementwise = FALSE}, yielding a matrix)?
#' Or, if \code{d} and \code{x} have the same length, should the evaluation be
#' done element by element (\code{elementwise = TRUE}, yielding a vector)? The
#' default of \code{NULL} means that \code{elementwise = TRUE} is used if the
#' lengths match and otherwise \code{elementwise = FALSE} is used.
#' @param ... Arguments to be passed to \code{\link[revdbayes]{dgev}}.
#' Unevaluated arguments will generate a warning to catch mispellings or other
#' possible errors.
#'
#' @return In case of a single distribution object, either a numeric
#' vector of length `probs` (if `drop = TRUE`, default) or a `matrix` with
#' `length(x)` columns (if `drop = FALSE`). In case of a vectorized distribution
#' object, a matrix with `length(x)` columns containing all possible combinations.
#' @export
#'
pdf.GEV <- function(d, x, drop = TRUE, elementwise = NULL, ...) {
FUN <- function(at, d) revdbayes::dgev(x = at, loc = d$mu, scale = d$sigma, shape = d$xi, ...)
apply_dpqr(d = d, FUN = FUN, at = x, type = "density", drop = drop, elementwise = elementwise)
}
#' @rdname pdf.GEV
#' @export
#'
log_pdf.GEV <- function(d, x, drop = TRUE, elementwise = NULL, ...) {
FUN <- function(at, d) revdbayes::dgev(x = at, loc = d$mu, scale = d$sigma, shape = d$xi, log = TRUE)
apply_dpqr(d = d, FUN = FUN, at = x, type = "logLik", drop = drop, elementwise = elementwise)
}
#' Evaluate the cumulative distribution function of a GEV distribution
#'
#' @inherit GEV examples
#'
#' @param d A `GEV` object created by a call to [GEV()].
#' @param x A vector of elements whose cumulative probabilities you would
#' like to determine given the distribution `d`.
#' @param drop logical. Should the result be simplified to a vector if possible?
#' @param elementwise logical. Should each distribution in \code{d} be evaluated
#' at all elements of \code{x} (\code{elementwise = FALSE}, yielding a matrix)?
#' Or, if \code{d} and \code{x} have the same length, should the evaluation be
#' done element by element (\code{elementwise = TRUE}, yielding a vector)? The
#' default of \code{NULL} means that \code{elementwise = TRUE} is used if the
#' lengths match and otherwise \code{elementwise = FALSE} is used.
#' @param ... Arguments to be passed to \code{\link[revdbayes]{pgev}}.
#' Unevaluated arguments will generate a warning to catch mispellings or other
#' possible errors.
#'
#' @return In case of a single distribution object, either a numeric
#' vector of length `probs` (if `drop = TRUE`, default) or a `matrix` with
#' `length(x)` columns (if `drop = FALSE`). In case of a vectorized distribution
#' object, a matrix with `length(x)` columns containing all possible combinations.
#' @export
#'
cdf.GEV <- function(d, x, drop = TRUE, elementwise = NULL, ...) {
FUN <- function(at, d) revdbayes::pgev(q = at, loc = d$mu, scale = d$sigma, shape = d$xi, ...)
apply_dpqr(d = d, FUN = FUN, at = x, type = "probability", drop = drop, elementwise = elementwise)
}
#' Determine quantiles of a GEV distribution
#'
#' `quantile()` is the inverse of `cdf()`.
#'
#' @inherit GEV examples
#' @inheritParams random.GEV
#'
#' @param probs A vector of probabilities.
#' @param drop logical. Should the result be simplified to a vector if possible?
#' @param elementwise logical. Should each distribution in \code{x} be evaluated
#' at all elements of \code{probs} (\code{elementwise = FALSE}, yielding a matrix)?
#' Or, if \code{x} and \code{probs} have the same length, should the evaluation be
#' done element by element (\code{elementwise = TRUE}, yielding a vector)? The
#' default of \code{NULL} means that \code{elementwise = TRUE} is used if the
#' lengths match and otherwise \code{elementwise = FALSE} is used.
#' @param ... Arguments to be passed to \code{\link[revdbayes]{qgev}}.
#' Unevaluated arguments will generate a warning to catch mispellings or other
#' possible errors.
#'
#' @return In case of a single distribution object, either a numeric
#' vector of length `probs` (if `drop = TRUE`, default) or a `matrix` with
#' `length(probs)` columns (if `drop = FALSE`). In case of a vectorized
#' distribution object, a matrix with `length(probs)` columns containing all
#' possible combinations.
#' @export
#'
quantile.GEV <- function(x, probs, drop = TRUE, elementwise = NULL, ...) {
FUN <- function(at, d) revdbayes::qgev(p = at, loc = d$mu, scale = d$sigma, shape = d$xi, ...)
apply_dpqr(d = x, FUN = FUN, at = probs, type = "quantile", drop = drop, elementwise = elementwise)
}
#' Return the support of a GEV distribution
#'
#' @param d An `GEV` object created by a call to [GEV()].
#' @param drop logical. Should the result be simplified to a vector if possible?
#' @param ... Currently not used.
#'
#' @return In case of a single distribution object, a numeric vector of length 2
#' with the minimum and maximum value of the support (if `drop = TRUE`, default)
#' or a `matrix` with 2 columns. In case of a vectorized distribution object, a
#' matrix with 2 columns containing all minima and maxima.
#'
#' @export
support.GEV <- function(d, drop = TRUE, ...) {
rlang::check_dots_used()
min <- rep(-Inf, length(d))
min[d$xi > 0] <- d$mu[d$xi > 0] - d$sigma[d$xi > 0]/d$xi[d$xi > 0]
max <- rep(Inf, length(d))
max[d$xi < 0] <- d$mu[d$xi < 0] - d$sigma[d$xi < 0]/d$xi[d$xi < 0]
make_support(min, max, d, drop = drop)
}
#' @exportS3Method
is_discrete.GEV <- function(d, ...) {
rlang::check_dots_used()
setNames(rep.int(FALSE, length(d)), names(d))
}
#' @exportS3Method
is_continuous.GEV <- function(d, ...) {
rlang::check_dots_used()
setNames(rep.int(TRUE, length(d)), names(d))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.