Nothing
#' Phylogenetic Diversity Accumulation of a Community
#'
#' Diversity and Entropy Accumulation Curves represent the accumulation of
#' entropy with respect to the sample size.
#'
#' `accum_ent_phylo()` or `accum_div_phylo()` estimate the phylogenetic
#' diversity or entropy accumulation curve of a distribution.
#' See [ent_tsallis] for details about the computation of entropy at each level
#' of interpolation and extrapolation.
#'
#' In accumulation curves, extrapolation if done by estimating the asymptotic
#' distribution of the community and estimating entropy at different levels
#' by interpolation.
#'
#' Interpolation and extrapolation of integer orders of diversity are from
#' \insertCite{Chao2014;textual}{divent}.
#' The asymptotic richness is adjusted so that the extrapolated part of the
#' accumulation joins the observed value at the sample size.
#'
#' "accumulation" objects can be plotted.
#' They generalize the classical Species Accumulation Curves (SAC) which are
#' diversity accumulation of order \eqn{q=0}.
#'
#' @inheritParams check_divent_args
#' @param x An object, that may be a numeric vector containing abundances or probabilities,
#' or an object of class [abundances] or [probabilities].
#' @param ... Unused.
#'
#' @returns A tibble with the site names, the estimators used and the accumulated entropy
#' or diversity at each level of sampling effort.
#'
#' @references
#' \insertAllCited{}
#'
#' @examples
#' # Richness accumulation up to the sample size.
#' # 100 simulations only to save time.
#' autoplot(
#' accum_div_phylo(mock_3sp_abd, tree = mock_3sp_tree, n_simulations = 100)
#' )
#'
#' @name accum_div_phylo
NULL
#' @rdname accum_div_phylo
#'
#' @export
accum_ent_phylo <- function(x, ...) {
UseMethod("accum_ent_phylo")
}
#' @rdname accum_div_phylo
#'
#' @param levels The levels, i.e. the sample sizes of interpolation or
#' extrapolation: a vector of integer values.
#'
#' @export
accum_ent_phylo.numeric <- function(
x,
tree,
q = 0,
normalize = TRUE,
levels = NULL,
probability_estimator = c("Chao2015", "Chao2013","ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("rarefy", "jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
n_simulations = 0,
alpha = 0.05,
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
# Prepare the tree
tree <- as_phylo_divent(tree)
# Check species names
col_names <- colnames(x)
species_names <- col_names[!col_names %in% non_species_columns]
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
# Set levels if needed
if (is.null(levels)) {
sample_size <- sum(x)
levels <- seq_len(sample_size)
}
}
# Make a species_distribution
the_species_distribution <- as_species_distribution(x)
# Entropy accumulation
the_entropy <- accum_ent_phylo.abundances(
x = the_species_distribution,
tree = tree,
q = q,
normalize = normalize,
levels = levels,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
gamma = FALSE,
n_simulations = n_simulations,
alpha = alpha,
show_progress = show_progress,
check_arguments = FALSE
)
# Return
return(the_entropy)
}
#' @rdname accum_div_phylo
#'
#' @export
accum_ent_phylo.abundances <- function(
x,
tree,
q = 0,
normalize = TRUE,
levels = NULL,
probability_estimator = c("Chao2015", "Chao2013","ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("rarefy", "jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
gamma = FALSE,
n_simulations = 0,
alpha = 0.05,
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
# Prepare the tree
tree <- as_phylo_divent(tree)
# Check species names
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
# Set levels if needed
if (is.null(levels)) {
sample_size <- max(
rowSums(
x[, !colnames(x) %in% non_species_columns]
)
)
levels <- seq_len(sample_size)
}
}
# Species names
col_names <- colnames(x)
species_names <- col_names[!col_names %in% non_species_columns]
# Calculate abundances along the tree, that are a list of matrices
if (gamma) {
the_phylo_abd <- phylo_abd(abundances = metacommunity(x), tree = tree)
} else {
the_phylo_abd <- phylo_abd(abundances = x, tree = tree)
}
# Prepare arrays to store entropy (3 dimensions: x, y, z)
# and simulated entropies (4 dimensions : x, y, z, t)
# x are tree intervals, y are communities, z are levels,
# t are simulations.
# Add an array to store simulation envelopes, where
# t are quantiles of simulations, inf and sup.
if (gamma) {
n_communities <- 1
} else {
n_communities <- nrow(x)
}
ent_phylo_abd <- array(
dim = c(length(tree$intervals), nrow(x), length(levels))
)
if (n_simulations > 0) {
ent_phylo_sim <- array(
dim = c(length(tree$intervals), nrow(x), length(levels), n_simulations)
)
ent_phylo_envelope <- array(
dim = c(length(tree$intervals), nrow(x), length(levels), 2)
)
}
# Prepare the progress bar
if (show_progress & interactive()) {
cli::cli_progress_bar(
"Computing entropy",
total = (length(the_phylo_abd) * n_communities) * (1 + n_simulations))
}
# Calculate entropy along the tree
for (x_interval in seq_along(the_phylo_abd)) {
if (n_simulations > 0) {
# Simulate communities
comm_sim.list <- apply(
# Produce a list of abundances, each of them contains n_simulations of
# a community
the_phylo_abd[[x_interval]],
MARGIN = 2,
FUN = function(abd) {
rcommunity(
n = n_simulations,
abd = abd,
check_arguments = FALSE
)
}
)
# Prepare an array to store simulated abd. Rows are species, columns are
# communities (same structure as groups of the_phylo_abd), z are simulations
# Max number of species in simulated communities
sp_sim <- max(
vapply(
comm_sim.list,
FUN = dim,
FUN.VALUE = c(0L, 0L)
)[2, ]
)
comm_sim <- array(
data = 0,
dim = c(sp_sim, length(comm_sim.list), n_simulations)
)
# Move the simulations from the list to the array
for (simulation in seq_len(n_simulations)) {
for (community in seq_along(comm_sim.list)) {
# Number of species in the simulation
# (= number of columns - 2 for site and weight)
sp_sim <- dim(comm_sim.list[[community]])[2] - 2
# Pick a simulation. Store simulated species, let extra cols = 0
comm_sim[1:sp_sim, community, simulation] <- as.numeric(
# Corresponding item in the list, remove site and weight
comm_sim.list[[community]][simulation, -(1:2)]
)
}
}
}
for (y_community in seq_len(n_communities)) {
# Calculate the profile of each community
# Actual data
ent_phylo_abd[x_interval, y_community, ] <- accum_tsallis.numeric(
x = the_phylo_abd[[x_interval]][, y_community],
q = q,
levels = levels,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
n_simulations = 0,
alpha = alpha,
show_progress = FALSE,
check_arguments = FALSE
)$entropy
for (t_simulation in seq_len(n_simulations)) {
# Entropy of simulated communities
ent_phylo_sim[x_interval, y_community, , t_simulation] <- accum_tsallis.numeric(
x = comm_sim[, y_community, t_simulation],
q = q,
levels = levels,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
n_simulations = 0,
alpha = alpha,
show_progress = FALSE,
check_arguments = FALSE
)$entropy
# Progress bar
if (show_progress & interactive()) cli::cli_progress_update()
}
if (n_simulations > 0) {
for (y_community in seq_len(n_communities)) {
for (z_level in seq_along(levels)) {
# Quantiles, recentered
ent_phylo_envelope[x_interval, y_community, z_level, ] <- stats::quantile(
ent_phylo_sim[x_interval, y_community, z_level, ],
probs = c(alpha / 2, 1 - alpha / 2),
na.rm = TRUE
) - mean(ent_phylo_sim[x_interval, y_community, z_level, ]) +
ent_phylo_abd[x_interval, y_community, z_level]
}
}
}
# Progress bar
if (show_progress & interactive()) cli::cli_progress_update()
}
}
if (show_progress & interactive()) cli::cli_progress_done()
# Average entropy
# Actual data
ent_community <- apply(
ent_phylo_abd,
MARGIN = 2:3,
FUN = stats::weighted.mean,
# Arguments
w = tree$intervals
)
# Simulations
if (n_simulations > 0) {
ent_quantiles <- apply(
ent_phylo_envelope,
MARGIN = 2:4,
FUN = stats::weighted.mean,
# Arguments
w = tree$intervals
)
}
# Format the result
the_profile_phylo <- ent.tibble(
ent.matrix = ent_community,
x = x,
levels = levels
)
# Add the estimator
sample_sizes <- rowSums(x[, species_names])
names(sample_sizes) = x$site
the_profile_phylo <- dplyr::mutate(
the_profile_phylo,
estimator = dplyr::case_when(
.data$level == sample_sizes[.data$site] ~ "Sample",
.data$level < sample_sizes[.data$site] ~ "Interpolation",
TRUE ~ "Extrapolation"
),
.before = "entropy"
)
# Add simulation columns
if (n_simulations > 0) {
ent_inf <- ent.tibble(
ent.matrix = ent_quantiles[, , 1],
x = x,
levels = levels
)
ent_sup <- ent.tibble(
ent.matrix = ent_quantiles[, , 2],
x = x,
levels = levels
)
the_profile_phylo <- dplyr::bind_cols(
the_profile_phylo,
inf = ent_inf$entropy,
sup = ent_sup$entropy
)
}
class(the_profile_phylo) <- c("accumulation", class(the_profile_phylo))
return(the_profile_phylo)
}
#' @rdname accum_div_phylo
#'
#' @export
accum_div_phylo <- function(x, ...) {
UseMethod("accum_div_phylo")
}
#' @rdname accum_div_phylo
#'
#' @export
accum_div_phylo.numeric <- function(
x,
tree,
q = 0,
normalize = TRUE,
levels = NULL,
probability_estimator = c("Chao2015", "Chao2013","ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("rarefy", "jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
n_simulations = 0,
alpha = 0.05,
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
# Prepare the tree
tree <- as_phylo_divent(tree)
# Check species names
col_names <- colnames(x)
species_names <- col_names[!col_names %in% non_species_columns]
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
# Set levels if needed
if (is.null(levels)) {
sample_size <- sum(x)
levels <- seq_len(sample_size)
}
}
# Make a the_species_distribution
the_species_distribution <- as_species_distribution(x)
# Diversity accumulation
the_diversity <- accum_div_phylo.abundances(
x = the_species_distribution,
tree = tree,
q = q,
normalize = normalize,
levels = levels,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
gamma = FALSE,
n_simulations = n_simulations,
alpha = alpha,
show_progress = show_progress,
check_arguments = FALSE
)
# Return
return(the_diversity)
}
#' @rdname accum_div_phylo
#'
#' @export
accum_div_phylo.abundances <- function(
x,
tree,
q = 0,
normalize = TRUE,
levels = NULL,
probability_estimator = c("Chao2015", "Chao2013","ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("rarefy", "jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
gamma = FALSE,
n_simulations = 0,
alpha = 0.05,
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
# Prepare the tree
tree <- as_phylo_divent(tree)
# Check species names
col_names <- colnames(x)
species_names <- col_names[!col_names %in% non_species_columns]
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
# Set levels if needed
if (is.null(levels)) {
sample_size <- max(
rowSums(
x[, !colnames(x) %in% non_species_columns]
)
)
levels <- seq_len(sample_size)
}
}
the_entropy <- accum_ent_phylo.abundances(
x,
tree = tree,
q = q,
normalize = normalize,
levels = levels,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
gamma = gamma,
n_simulations = n_simulations,
alpha = alpha,
show_progress = show_progress,
check_arguments = FALSE
)
# Calculate diversity
the_diversity <- dplyr::mutate(
the_entropy,
diversity = exp_q(.data$entropy, q = q),
.keep = "unused"
)
if (n_simulations > 0) {
the_diversity <- dplyr::mutate(
the_diversity,
inf = exp_q(.data$inf, q = q),
sup = exp_q(.data$sup, q = q)
)
}
return(the_diversity)
}
#' Make a long tibble of entropy with a matrix of entropy
#'
#' Utility for [accum_ent_phylo.abundances]
#'
#' @param ent.matrix The matrix of entropies.
#' Rows are communities, columns are orders of entropy.
#' @param x The species distribution.
#' @param levels The levels of interpolation and extrapolation.
#'
#' @returns A tibble. Columns are "site", "level" and "entropy".
#' @noRd
#'
ent.tibble <- function(ent.matrix, x, levels) {
if (!is.matrix(ent.matrix)) {
# ent.matrix may be a numeric vector (single community / min and max)
ent.matrix <- t(as.matrix(ent.matrix))
}
# Make a tibble with site names and entropies.
# Columns are levels of inter/extrapolation
the_ent.tibble <- tibble::tibble(
site = x$site,
data.frame(ent.matrix)
)
colnames(the_ent.tibble)[-1] <- as.character(levels)
# Make a long tibble with an "level" column
the_ent.tibble <- tidyr::pivot_longer(
the_ent.tibble,
cols = !.data$site,
names_to = "level",
names_transform = list(level = as.numeric),
values_to = "entropy"
)
# Return
return(the_ent.tibble)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.