Nothing
#' Similarity-Based Diversity Profile of a Community
#'
#' Calculate the diversity profile of a community, i.e. its similarity-based diversity
#' against its order.
#'
#' A bootstrap confidence interval can be produced by simulating communities
#' (their number is `n_simulations`) with [rcommunity] and calculating their profiles.
#' Simulating communities implies a downward bias in the estimation:
#' rare species of the actual community may have abundance zero in simulated communities.
#' Simulated diversity values are recentered so that their mean is that of the actual community.
#'
#' @inheritParams check_divent_args
#' @param x An object, that may be a numeric vector containing abundances or probabilities,
#' or an object of class [abundances] or [probabilities].
#' @param ... Unused.
#'
#' @examples
#' # Similarity matrix
#' Z <- fun_similarity(paracou_6_fundist)
#' # Profile
#' profile_similarity(paracou_6_abd, similarities = Z, q = 2)
#'
#' @returns A tibble with the site names, the estimators used and the estimated diversity at each order.
#' This is an object of class "profile" that can be plotted.
#'
#' @references
#' \insertAllCited{}
#'
#' @name profile_similarity
NULL
#' @rdname profile_similarity
#'
#' @export
profile_similarity <- function(
x,
similarities,
orders = seq(from = 0, to = 2, by = 0.1),
...) {
UseMethod("profile_similarity")
}
#' @rdname profile_similarity
#'
#' @param orders The orders of diversity used to build the profile.
#' @param estimator An estimator of entropy.
#' @param n_simulations The number of simulations used to estimate the confidence envelope of the profile.
#' @param alpha The risk level, 5% by default, of the confidence envelope of the profile.
#'
#' @export
profile_similarity.numeric <- function(
x,
similarities = diag(length(x)),
orders = seq(from = 0, to = 2, by = 0.1),
estimator = c("UnveilJ", "Max", "ChaoShen", "MarconZhang",
"UnveilC", "UnveiliC", "naive"),
probability_estimator = c("Chao2015", "Chao2013", "ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
sample_coverage = NULL,
as_numeric = FALSE,
n_simulations = 0,
alpha = 0.05,
bootstrap = c("Chao2015", "Marcon2012", "Chao2013"),
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
estimator <- match.arg(estimator)
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
coverage_estimator <- match.arg(coverage_estimator)
bootstrap <- match.arg(bootstrap)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
similarities <- checked_matrix(similarities, x)
}
# Numeric vector, no simulation ----
if (as_numeric) {
if (n_simulations > 0) {
cli::cli_abort(
c(
"No simulations are allowed if a numeric vector is expected",
"i" = "Change argument for {.code as_numeric = FALSE}"
)
)
}
the_profile_similarity <- vapply(
orders,
FUN = function(q) {
div_similarity.numeric(
x,
similarities = similarities,
q = q,
estimator = estimator,
probability_estimator = probability_estimator,
unveiling = unveiling,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
sample_coverage = sample_coverage,
as_numeric = TRUE,
check_arguments = FALSE
)
},
FUN.VALUE = 0
)
return(the_profile_similarity)
}
# Regular output, simulations are allowed ----
the_profile_similarity <- lapply(
orders,
FUN = function(q) {
div_similarity.numeric(
x,
similarities = similarities,
q = q,
estimator = estimator,
probability_estimator = probability_estimator,
unveiling = unveiling,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
as_numeric = FALSE,
check_arguments = FALSE
)
}
)
# Make a tibble with the list
the_profile_similarity <- do.call(rbind.data.frame, the_profile_similarity)
if (n_simulations > 0) {
# Simulations ----
if (!is_integer_values(x)) {
cli::cli_alert_warning(
paste(
"Evaluation of the confidence interval of community profiles requires",
"integer abundances."
)
)
cli::cli_alert("They have been rounded.")
}
abd_int <- round(x)
# Simulate communities
communities <- rcommunity(
n_simulations,
abd = abd_int,
bootstrap = bootstrap,
check_arguments = FALSE
)
# Prepare the progress bar
if (show_progress & interactive()) {
cli::cli_progress_bar("Running simulations", total = n_simulations)
}
# Prepare the result matrix
profile_similarities <- matrix(0, nrow = n_simulations, ncol = length(orders))
# Loops are required for the progress bar
for (i in seq_len(n_simulations)) {
# Parallelize. Do not allow more forks.
profiles_list <- parallel::mclapply(
orders,
FUN = function(q) {
div_similarity.numeric(
communities[i, !colnames(communities) %in% non_species_columns],
similarities = similarities,
q = q,
estimator = estimator,
probability_estimator = probability_estimator,
unveiling = unveiling,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
sample_coverage = sample_coverage,
as_numeric = TRUE,
check_arguments = FALSE
)
},
mc.allow.recursive = FALSE
)
profile_similarities[i, ] <- simplify2array(profiles_list)
if (show_progress & interactive()) cli::cli_progress_update()
}
# Recenter simulated values
div_means <- apply(profile_similarities, 2, mean)
profile_similarities <- t(
t(profile_similarities) - div_means + the_profile_similarity$diversity
)
# Quantiles
div_quantiles <- apply(
profile_similarities,
MARGIN = 2,
FUN = stats::quantile,
probs = c(alpha / 2, 1 - alpha / 2)
)
# Format the result
the_profile_similarity <- tibble::tibble(
the_profile_similarity,
inf = div_quantiles[1, ],
sup = div_quantiles[2, ]
)
}
class(the_profile_similarity) <- c("profile", class(the_profile_similarity))
return(the_profile_similarity)
}
#' @rdname profile_similarity
#'
#' @export
profile_similarity.species_distribution <- function(
x,
similarities = diag(sum(!colnames(x) %in% non_species_columns)),
orders = seq(from = 0, to = 2, by = 0.1),
estimator = c("UnveilJ", "Max", "ChaoShen", "MarconZhang",
"UnveilC", "UnveiliC", "naive"),
probability_estimator = c("Chao2015", "Chao2013", "ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
gamma = FALSE,
n_simulations = 0,
alpha = 0.05,
bootstrap = c("Chao2015", "Marcon2012", "Chao2013"),
show_progress = TRUE,
...,
check_arguments = TRUE) {
# Check arguments
estimator <- match.arg(estimator)
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
coverage_estimator <- match.arg(coverage_estimator)
bootstrap <- match.arg(bootstrap)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
similarities <- checked_matrix(similarities, x)
}
if (gamma) {
the_profile_similarity <- profile_similarity.numeric(
metacommunity.abundances(
x = x,
as_numeric = TRUE,
check_arguments = FALSE
),
# Arguments
similarities = similarities,
orders = orders,
estimator = estimator,
probability_estimator = probability_estimator,
unveiling = unveiling,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
as_numeric = FALSE,
n_simulations = n_simulations,
alpha = alpha,
bootstrap = bootstrap,
show_progress = show_progress,
check_arguments = FALSE
)
} else {
# Apply profile_similarity.numeric() to each site
profile_similarity_list <- apply(
# Eliminate site and weight columns
x[, !colnames(x) %in% non_species_columns],
# Apply to each row
MARGIN = 1,
FUN = profile_similarity.numeric,
# Arguments
similarities = similarities,
orders = orders,
probability_estimator = probability_estimator,
unveiling = unveiling,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
as_numeric = FALSE,
n_simulations = n_simulations,
alpha = alpha,
bootstrap = bootstrap,
show_progress = show_progress,
check_arguments = FALSE
)
# Make a tibble with sites and profiles
the_profile_similarity <- tibble::tibble(
site = rep(x$site, each = length(orders)),
# Coerce the list returned by apply into a dataframe
do.call(rbind.data.frame, profile_similarity_list)
)
}
class(the_profile_similarity) <- c("profile", class(the_profile_similarity))
return(the_profile_similarity)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.