Description Usage Arguments Value Author(s) References Examples
Computes the connectivity scores for a network based on correlation.
1 |
data |
microarray dataset with genes in columns and samples in rows. |
rescale.scores |
indicates whether PLS scores should be rescaled so that the largest score for each gene should be 1 in magnitude. |
cornet |
a correlation matrix measuring the interactions between gene pairs. |
The authors are Ryan Gill, Somnath Datta, and Susmita Datta. The software is maintained by Ryan Gill rsgill01@louisville.edu.
Gill, R., Datta, S., and Datta, S. (2010) A statistical framework for differential network analysis from microarray data. BMC Bioinformatics, 11, 95.
1 2 3 4 5 6 7 8 9 10 11 12 | # small example using cornet without rescaled scores
X1=rbind(
c(2.5,6.7,4.5,2.3,8.4,3.1),
c(1.2,0.7,4.0,9.1,6.6,7.1),
c(4.3,-1.2,7.5,3.8,1.0,9.3),
c(9.5,7.6,5.4,2.3,1.1,0.2))
s=cornet(X1)
print(round(s,4))
# small example using cornet with rescaled scores
s2=cornet(X1,rescale.scores=TRUE)
print(round(s2,4))
|
dna 1.1-1 loaded
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
Gene 1 1.0000 0.5089 0.3534 -0.6147 -0.7502 -0.6307
Gene 2 0.5089 1.0000 -0.4374 -0.6083 0.1827 -0.9764
Gene 3 0.3534 -0.4374 1.0000 -0.3977 -0.7864 0.4131
Gene 4 -0.6147 -0.6083 -0.3977 1.0000 0.2964 0.5426
Gene 5 -0.7502 0.1827 -0.7864 0.2964 1.0000 -0.0388
Gene 6 -0.6307 -0.9764 0.4131 0.5426 -0.0388 1.0000
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
Gene 1 1.0000 0.5212 0.3619 -0.6295 -0.7683 -0.6460
Gene 2 0.5212 1.0000 -0.4480 -0.6230 0.1871 -1.0000
Gene 3 0.3619 -0.4480 1.0000 -0.4073 -0.8054 0.4231
Gene 4 -0.6295 -0.6230 -0.4073 1.0000 0.3036 0.5557
Gene 5 -0.7683 0.1871 -0.8054 0.3036 1.0000 -0.0398
Gene 6 -0.6460 -1.0000 0.4231 0.5557 -0.0398 1.0000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.