Description Usage Arguments Value Examples
The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.
1 |
data |
dependent variables |
treatmentvector |
vector containing treatments |
row |
vector for rows |
column |
vector for columns |
MultipleComparisonTest |
0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test |
ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result
1 2 3 4 5 |
$Yield
$Yield[[1]]
Analysis of Variance Table
Response: data2
Df Sum Sq Mean Sq F value Pr(>F)
row 4 66.76 16.689 0.6374 0.645733
column 4 42.33 10.582 0.4041 0.802178
trt 4 957.97 239.491 9.1460 0.001253 **
Residuals 12 314.22 26.185
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
$Yield[[2]]
[1] "R Square 0.773"
$Yield[[3]]
Shapiro-Wilk normality test
data: model$residuals
W = 0.98241, p-value = 0.9283
$Yield[[4]]
[1] "Normality assumption is not violated"
$Yield[[5]]
[1] "SEm 2.2885 , SEd 3.2364"
$Yield[[6]]
[1] "The treatment means of one or more treatments are not same, so go for multiple comparison test"
$Yield[[7]]
$Yield[[7]][[1]]
MSerror Df Mean CV t.value LSD
26.1854 12 33.536 15.25873 2.178813 7.051468
$Yield[[7]][[2]]
data2 groups
B 40.40 a
C 37.72 a
D 37.42 a
E 26.52 b
A 25.62 b
$Yield
$Yield[[1]]
Analysis of Variance Table
Response: data2
Df Sum Sq Mean Sq F value Pr(>F)
row 4 66.76 16.689 0.6374 0.645733
column 4 42.33 10.582 0.4041 0.802178
trt 4 957.97 239.491 9.1460 0.001253 **
Residuals 12 314.22 26.185
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
$Yield[[2]]
[1] "R Square 0.773"
$Yield[[3]]
Shapiro-Wilk normality test
data: model$residuals
W = 0.98241, p-value = 0.9283
$Yield[[4]]
[1] "Normality assumption is not violated"
$Yield[[5]]
[1] "SEm 2.2885 , SEd 3.2364"
$Yield[[6]]
[1] "The treatment means of one or more treatments are not same, so go for multiple comparison test"
$Yield[[7]]
$Yield[[7]][[1]]
MSerror Df Mean CV t.value LSD
26.1854 12 33.536 15.25873 2.178813 7.051468
$Yield[[7]][[2]]
data2 groups
B 40.40 a
C 37.72 a
D 37.42 a
E 26.52 b
A 25.62 b
$Plant_Height
$Plant_Height[[1]]
Analysis of Variance Table
Response: data2
Df Sum Sq Mean Sq F value Pr(>F)
row 4 306.16 76.540 5.0666 0.01262 *
column 4 28.56 7.140 0.4726 0.75515
trt 4 23.76 5.940 0.3932 0.80967
Residuals 12 181.28 15.107
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
$Plant_Height[[2]]
[1] "R Square 0.664"
$Plant_Height[[3]]
Shapiro-Wilk normality test
data: model$residuals
W = 0.96767, p-value = 0.5866
$Plant_Height[[4]]
[1] "Normality assumption is not violated"
$Plant_Height[[5]]
[1] "SEm 1.7382 , SEd 2.4582"
$Plant_Height[[6]]
[1] "All the treatment means are same so dont go for any multiple comparison test"
$Plant_Height[[7]]
$Plant_Height[[7]][[1]]
MSerror Df Mean CV t.value LSD
15.10667 12 18.36 21.16955 2.178813 5.355922
$Plant_Height[[7]][[2]]
data2 groups
A 19.8 a
D 18.8 a
B 18.6 a
E 17.6 a
C 17.0 a
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.