Nothing
#' @title Fitted values of double-constrained correspondence analysis (dc-CA)
#'
#' @description
#' Community weighted means (CWM) and species-niche centroids (SNC),
#' as fitted (in full or reduced rank) from the environmental data and
#' trait data, respectively, and
#' the fitted response from trait and environment data.
#'
#' @param object return value of \code{\link{dc_CA}}.
#' @param ... Other arguments passed to the function (currently ignored).
#' @param type type of prediction, \code{c( "CWM","SNC", "response")}
#' for environmental values, values of traits,
#' response (expected abundance).
#' @param rank rank (number of axes to use). Default "full" for all axes
#' (no rank-reduction).
#'
#' @details
#'
#' If \code{type="response"} the rowsums of \code{object$data$Y} are used
#' to scale the fit to these sums. Many of the predicted response values may
#' be negative, indicating expected absences (0) or small expected response
#' values.
#'
#' @returns a matrix with fitted value. The exact content of the matrix
#' depends on the \code{type} of fits that are asked for.
#'
#'
#' @example demo/dune_dcCA_fitted.R
#'
#' @export
fitted.dcca <- function(object,
...,
type = c("CWM", "SNC", "response"),
rank = "full") {
newdata <- NULL
type <- match.arg(type)
if (rank == "full") {
rank <- length(object$eigenvalues)
}
if (type == "response") {
newdata1 <- list(
# env prediction requires trait data
traits = object$data$dataTraits,
# trait prediction requires env data
env = object$data$dataEnv
)
}
ret <- switch(type,
SNC = predict_env(object, object$data$dataTraits, rank),
CWM = predict_traits(object, object$data$dataEnv, rank),
response = predict_response(object, newdata1, rank,
object$weights)
)
if (type == "response") {
if (is.null(object$data$Y)) {
totsum <- 1
} else {
totsum <- sum(object$data$Y)
}
ret <- ret * totsum
}
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.