Nothing
data("dune_trait_env")
rownames(dune_trait_env$comm) <- dune_trait_env$comm$Sites
out1 <- dc_CA(formulaEnv = ~ A1 + Moist + Mag + Use + Manure,
formulaTraits = ~ SLA + Height + LDMC + Seedmass + Lifespan,
response = dune_trait_env$comm[, -1], # must delete "Sites"
dataEnv = dune_trait_env$envir,
dataTraits = dune_trait_env$traits,
verbose = TRUE)
# Manual forward selection of environmental variables
# step 1
# user define:
consider <- names(dune_trait_env$envir)[2:6]
test <- TRUE
cntr <- permute::how(nperm = 999)
p.adjust.method <- "holm"
set.seed(213)
names(consider) <- consider
consider
# initiate
fit_measuresL <- list()
fit_measures <- matrix(NA, nrow = length(consider), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- consider
considered <- NULL
for (k in seq_along(consider)) {
formulaE_FS <- as.formula(paste("~", consider[k]))
out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
if (test) {
an <- anova(out_FS$RDAonEnv, permutations = cntr)
pval <- an$`Pr(>F)`[1]
} else {
pval <- NA
}
fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}
pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures,pvaladj )
round(fit_measures, 3) # best = Moist ; significant, also after correction for multiple testing....
chosen_env <- "Moist"
# step 2
fit_measuresL[[chosen_env]] <- fit_measures
considered <- c(considered, consider[chosen_env])
considerk <- consider[-which(consider %in% chosen_env)] # remove Moist
fit_measures <- matrix(NA, nrow = length(considerk), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- considerk
for (k in seq_along(considerk)) {
formulaE_FS <-
as.formula(paste("~", considerk[k], "+ Condition(",
paste(considered, collapse = "+"), ")"))
out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
if (test) {
an <- anova(out_FS$RDAonEnv, permutations = cntr)
pval <- an$`Pr(>F)`[1]
} else {
pval <- NA
}
fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}
pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures, pvaladj )
round(fit_measures, 3)
# best = Manure ; significant, also after correction for multiple testing (given step1)
chosen_env <- "Manure"
# step 3
fit_measuresL[[chosen_env]] <- fit_measures
considered <- c(considered, consider[chosen_env])
considerk <- considerk[-which(considerk %in% chosen_env)]
fit_measures <- matrix(NA, nrow = length(considerk), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- considerk
for (k in seq_along(considerk)) {
formulaE_FS <-
as.formula(paste("~", considerk[k], "+ Condition(",
paste(considered, collapse = "+"), ")"))
out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
if (test) {
an <- anova(out_FS$RDAonEnv, permutations = cntr)
pval <- an$`Pr(>F)`[1]
} else {
pval <- NA
}
fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}
pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures,pvaladj )
round(fit_measures, 3) # best = Mag; not significant
chosen_env <- "Mag"
fit_measuresL[[chosen_env]] <- fit_measures
fit_measuresL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.