demo/dune_select.R

data("dune_trait_env")

rownames(dune_trait_env$comm) <- dune_trait_env$comm$Sites

out1 <- dc_CA(formulaEnv = ~ A1 + Moist + Mag + Use + Manure,
              formulaTraits = ~ SLA + Height + LDMC + Seedmass + Lifespan,
              response = dune_trait_env$comm[, -1],  # must delete "Sites"
              dataEnv = dune_trait_env$envir,
              dataTraits = dune_trait_env$traits,
              verbose = TRUE)

# Manual forward selection of environmental variables

# step 1
# user define:
consider <- names(dune_trait_env$envir)[2:6]
test <- TRUE
cntr <- permute::how(nperm = 999)
p.adjust.method <- "holm"
set.seed(213)

names(consider) <- consider
consider

# initiate
fit_measuresL <- list()
fit_measures <- matrix(NA, nrow = length(consider), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- consider
considered <- NULL

for (k in seq_along(consider)) {
  formulaE_FS <- as.formula(paste("~", consider[k]))
  
  out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
  
  if (test) {
    an <- anova(out_FS$RDAonEnv, permutations = cntr)
    pval <- an$`Pr(>F)`[1]
  } else {
    pval <- NA
  }
  fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}

pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures,pvaladj )
round(fit_measures, 3) # best = Moist ; significant, also after correction for multiple testing....


chosen_env <- "Moist"

# step 2 
fit_measuresL[[chosen_env]] <- fit_measures
considered <- c(considered, consider[chosen_env])

considerk <- consider[-which(consider %in% chosen_env)] # remove Moist

fit_measures <- matrix(NA, nrow = length(considerk), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- considerk

for (k in seq_along(considerk)) {
  formulaE_FS <- 
    as.formula(paste("~", considerk[k], "+ Condition(", 
                     paste(considered, collapse = "+"), ")"))
  
  out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
  
  if (test) {
    an <- anova(out_FS$RDAonEnv, permutations = cntr)
    pval <- an$`Pr(>F)`[1]
  } else {
    pval <- NA
  }
  fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}

pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures, pvaladj )
round(fit_measures, 3) 

# best = Manure ; significant, also after correction for multiple testing (given step1)
chosen_env <- "Manure"

# step 3
fit_measuresL[[chosen_env]] <- fit_measures

considered <- c(considered, consider[chosen_env])
considerk <- considerk[-which(considerk %in% chosen_env)]

fit_measures <- matrix(NA, nrow = length(considerk), ncol = 2)
colnames(fit_measures) <- c("eig1", "pval1")
rownames(fit_measures) <- considerk

for (k in seq_along(considerk)) {
  formulaE_FS <- 
    as.formula(paste("~", considerk[k], "+ Condition(", 
                     paste(considered, collapse = "+"), ")"))
  
  out_FS <- dc_CA(formulaE_FS, dc_CA_object = out1, verbose = FALSE)
  
  if (test) {
    an <- anova(out_FS$RDAonEnv, permutations = cntr)
    pval <- an$`Pr(>F)`[1]
  } else {
    pval <- NA
  }
  fit_measures[k, ] <- c(out_FS$eigenvalues[1], pval)
}

pvaladj <- p.adjust(fit_measures[, "pval1"], method = p.adjust.method)
fit_measures <- cbind(fit_measures,pvaladj )
round(fit_measures, 3) # best = Mag; not significant
chosen_env <- "Mag"

fit_measuresL[[chosen_env]] <- fit_measures
fit_measuresL

Try the douconca package in your browser

Any scripts or data that you put into this service are public.

douconca documentation built on June 8, 2025, 11:47 a.m.