Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, fig.width = 7, fig.height = 7)
## -----------------------------------------------------------------------------
library(dscore)
builtin_keys[, c("key", "base_population")]
## -----------------------------------------------------------------------------
get_mu(t = c(0:12)/12, key = "gsed2406")
## -----------------------------------------------------------------------------
# Calculate the custom prior mean by adding 5 to the default prior mean
data <- milestones
mymean <- get_mu(t = data$age, key = "gsed2406") + 5
# Calculate default D-scores
def <- dscore(data)
head(def)
# Custom prior, direct specification
adj1 <- dscore(data, prior_mean = mymean)
head(adj1)
# Custom prior, column specification
adj2 <- dscore(cbind(data, mymean), prior_mean = "mymean")
head(adj2)
identical(adj1, adj2)
## -----------------------------------------------------------------------------
# Plot the difference between adjusted and default D-scores
plot(y = adj1$d - def$d, x = def$p,
xlab = "Proportion of items passed by the child",
ylab = "Upward drift of D-score",
pch = 16, main = "Impact of Custom Prior Mean on D-score")
# Add a smoothed line to visualize the trend
lines(lowess(x = def$p, y = adj1$d - def$d, f = 0.5), col = "grey", lwd = 2)
## -----------------------------------------------------------------------------
# Filter data for a specific child
boy <- milestones[milestones$id == 111, ]
# Calculate default D-scores
def <- dscore(boy)
def
## -----------------------------------------------------------------------------
# Calculate expected D-scores and standard deviations
exp_d <- zad(z = c(0, def$daz[1:3]), x = def$a)
exp_sd <- c(5, def$sem[1:3])
# Calculate adjusted D-scores using the custom prior mean and standard deviation
adj1 <- dscore(boy, prior_mean = exp_d, prior_sd = exp_sd)
## ----fig.height=4-------------------------------------------------------------
# Plotting the raw and informed DAZ trajectories
plot(x = def$a, y = def$daz, type = "b", pch = 16,
ylab = "DAZ", xlab = "Age (years)",
main = "Standard (black) and Informed (red) DAZ-trajectory for child 111")
points(x = adj1$a, y = adj1$daz, col = "red", type = "b", lwd = 2, pch = 16)
## -----------------------------------------------------------------------------
# Set missing ages for specific observations
boy$age[2:3] <- NA
# Calculate D-scores using default
def <- dscore(boy)
def
## -----------------------------------------------------------------------------
# Calculate D-scores for missing ages using age-independent priors
adj1 <- dscore(boy, prior_mean_NA = 50, prior_sd_NA = 20)
adj1
## -----------------------------------------------------------------------------
# Forcing D-scores for missing ages to value -1
adj2 <- dscore(boy, prior_mean_NA = -1, prior_sd_NA = 0.001)
adj2
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.