Nothing
library(testthat)
library(e2tree)
library(randomForest)
test_that("e2tree works correctly for classification", {
set.seed(42)
# Prepare data
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
# Train Random Forest
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Run e2tree
tree <- e2tree(Species ~ ., training, D, ensemble, setting)
# Tests
expect_type(tree, "list") # Must return a list
expect_true("tree" %in% names(tree)) # Must contain a tree object
expect_true(is.data.frame(tree$tree)) # The tree should be a data frame
})
test_that("e2tree works correctly for regression", {
set.seed(42)
# Prepare data
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
# Train Random Forest
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting=list(impTotal=0.1, maxDec=(1*10^-6), n=2, level=5)
# Run e2tree
tree <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Tests
expect_type(tree, "list") # Must return a list
expect_true("tree" %in% names(tree)) # Must contain a tree object
expect_true(is.data.frame(tree$tree)) # The tree should be a data frame
})
test_that("e2tree handles incorrect input types", {
set.seed(42)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Test incorrect inputs
expect_error(e2tree(NULL, training, D, ensemble, setting),
"Error: 'formula' must be a valid formula object.")
expect_error(e2tree(Species ~ ., NULL, D, ensemble, setting),
"Error: 'data' must be a non-empty data frame.")
expect_error(e2tree(Species ~ ., training, NULL, ensemble, setting),
"Error: 'D' must be a square dissimilarity matrix.")
expect_error(e2tree(Species ~ ., training, D, NULL, setting),
"Error: 'ensemble' must be a trained 'randomForest' model.")
expect_error(e2tree(Species ~ ., training, D, ensemble, NULL),
"Error: 'setting' must be a list with keys: 'impTotal', 'maxDec', 'n', and 'level'.")
ensemble$type <- "unknown_type" # Modify to invalid type
expect_error(e2tree(Species ~ ., training, D, ensemble, setting),
"Error: 'type' in ensemble object must be either 'classification' or 'regression'.")
})
test_that("e2tree handles incorrect settings", {
set.seed(42)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
# Incorrect settings
bad_setting1 <- list(impTotal = -0.1, maxDec = 0.01, n = 2, level = 5)
bad_setting2 <- list(impTotal = "high", maxDec = 0.01, n = 2, level = 5)
expect_error(e2tree(Species ~ ., training, D, ensemble, bad_setting1),
"Error: All values in 'setting' must be positive numeric values.")
expect_error(e2tree(Species ~ ., training, D, ensemble, bad_setting2),
"Error: All values in 'setting' must be positive numeric values.")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.