Nothing
library(testthat)
library(e2tree)
library(randomForest)
test_that("ePredTree works correctly for classification", {
set.seed(123)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
validation <- iris[-train_idx, ]
ensemble <- randomForest(Species ~ ., data=training, proximity=TRUE)
D <- createDisMatrix(ensemble, data=training, label="Species", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal=0.1, maxDec=0.01, n=2, level=5)
tree <- e2tree(Species ~ ., training, D, ensemble, setting)
pred <- ePredTree(tree, validation, target="setosa")
expect_s3_class(pred, "data.frame")
expect_true(all(c("fit", "accuracy", "score") %in% names(pred)))
expect_equal(nrow(pred), nrow(validation))
expect_type(pred$fit, "character")
})
test_that("ePredTree works correctly for regression", {
set.seed(123)
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
validation <- mtcars[-train_idx, ]
ensemble <- randomForest(mpg ~ ., data=training, proximity=TRUE)
D <- createDisMatrix(ensemble, data=training, label="mpg", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal=0.1, maxDec=1e-6, n=2, level=5)
tree <- e2tree(mpg ~ ., training, D, ensemble, setting)
pred <- ePredTree(tree, validation)
expect_s3_class(pred, "data.frame")
expect_true(all(c("fit", "accuracy", "score") %in% names(pred)))
expect_equal(nrow(pred), nrow(validation))
expect_type(pred$fit, "double")
expect_true(all(is.na(pred$accuracy)))
expect_true(all(is.na(pred$score)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.