Nothing
library(testthat)
library(e2tree)
library(randomForest)
test_that("vimp works correctly with valid inputs (classification case)", {
set.seed(42)
# Prepare data
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
# Train Random Forest
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Generate e2tree model
fit <- e2tree(Species ~ ., training, D, ensemble, setting)
# Run vimp function
vimp_result <- vimp(fit, training, type = "classification")
# Tests
expect_type(vimp_result, "list") # Should return a list
expect_true("vimp" %in% names(vimp_result))
expect_true(is.data.frame(vimp_result$vimp)) # vimp should be a data frame
})
test_that("vimp handles incorrect input types (classification case)", {
set.seed(42)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(Species ~ ., training, D, ensemble, setting)
# Test incorrect inputs
expect_error(vimp(NULL, training, "classification"),
"Error: 'fit' must be an 'e2tree' object.")
expect_error(vimp(fit, NULL, "classification"),
"Error: 'data' must be a non-empty data frame.")
expect_error(vimp(fit, training, "unknown_type"),
"Error: 'type' must be either 'classification' or 'regression'.")
})
test_that("vimp handles missing response variable in data (classification case)", {
set.seed(42)
data(iris)
train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris))
training <- iris[train_idx, ]
ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(Species ~ ., training, D, ensemble, setting)
# Remove response variable from training data
training_no_species <- training[, -which(names(training) == "Species")]
expect_error(vimp(fit, training_no_species, "classification"),
"Error: The response variable from 'fit' is not found in 'data'.")
})
test_that("vimp works correctly with valid inputs (regression case)", {
set.seed(42)
# Prepare data
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
# Train Random Forest
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
# Create dissimilarity matrix
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
# Define settings
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
# Generate e2tree model
fit <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Run vimp function
vimp_result <- vimp(fit, training, type = "regression")
# Tests
expect_type(vimp_result, "list") # Should return a list
expect_true("vimp" %in% names(vimp_result))
expect_true(is.data.frame(vimp_result$vimp)) # vimp should be a data frame
})
test_that("vimp handles incorrect input types (regression case)", {
set.seed(42)
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Test incorrect inputs
expect_error(vimp(NULL, training, "classification"),
"Error: 'fit' must be an 'e2tree' object.")
expect_error(vimp(fit, NULL, "classification"),
"Error: 'data' must be a non-empty data frame.")
expect_error(vimp(fit, training, "unknown_type"),
"Error: 'type' must be either 'classification' or 'regression'.")
})
test_that("vimp handles missing response variable in data (regression case)", {
set.seed(42)
data(mtcars)
train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars))
training <- mtcars[train_idx, ]
ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE)
D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1))
setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5)
fit <- e2tree(mpg ~ ., training, D, ensemble, setting)
# Remove response variable from training data
training_no_mpg <- training[, -which(names(training) == "mpg")]
expect_error(vimp(fit, training_no_mpg, "classification"),
"Error: The response variable from 'fit' is not found in 'data'.")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.