Nothing
sim.xdim <- function(persons, items, Sigma, weightmat, seed = NULL, cutpoint = "randomized")
{
# Sigma ... VC matrix for multinormal distribution
# weightmat ... matrix of dimension k times D with weights. If omitted, equal weights are used.
if (missing(Sigma)) {
ndim <- ncol(persons)
} else {
ndim <- nrow(Sigma) #number of dimensions
}
if (length(persons) == 1) { #simulating
if (!is.null(seed)) set.seed(seed)
faehig <- mvrnorm(persons, mu = rep(0, nrow(Sigma)), Sigma = Sigma)
} else {
faehig <- persons
}
if (length(items) == 1) {
if (!is.null(seed)) set.seed(seed)
schwierig <- rnorm(items)
} else {
schwierig <- items
}
n.persons <- nrow(faehig)
n.items <- length(schwierig)
if (missing(weightmat)) { #specifying the weight matrix
weightmat <- matrix(0, ncol = ndim, nrow = n.items)
if (!is.null(seed)) set.seed(seed)
indvec <- sample(1:ndim, n.items, replace = TRUE)
for (i in 1:n.items) weightmat[i,indvec[i]] <- 1
}
Wp <- apply(weightmat, 1, function(wi) { #n.persons times n.items matrix
Xw <- t(wi) %*% t(faehig)})
psolve <- matrix(0,n.persons,n.items)
#class<-rep(1,n.persons)
#class[sample(n.persons)[1:round(n.persons/2,0)]]<-2
for (j in 1:n.items)
for (i in 1:n.persons)
psolve[i,j] <- exp(Wp[i,j]-schwierig[j])/(1+ exp(Wp[i,j]-schwierig[j]))
if (cutpoint == "randomized") {
if (!is.null(seed)) set.seed(seed)
R <-(matrix(runif(n.items*n.persons),n.persons,n.items) < psolve)*1
} else {
R <- (cutpoint < psolve)*1
}
return(R)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.