Description Usage Arguments Details Value Author(s) References See Also Examples
Fits a (multi-attribute) probabilistic choice model by maximum likelihood.
1 2 3 4 5 6 7 8 9 |
M |
a square matrix or a data frame consisting of absolute choice frequencies; row stimuli are chosen over column stimuli |
A |
a list of vectors consisting of the stimulus aspects;
the default is |
s |
the starting vector with default |
constrained |
logical, if TRUE (default), parameters are constrained to be positive |
object |
an object of class |
test |
should the p-values of the chi-square distributions be reported? |
... |
additional arguments; none are used in the summary method;
in the anova method they refer to additional objects of class |
eba
is a wrapper function for OptiPt
. Both functions can be
used interchangeably. See Wickelmaier and Schmid (2004) for further
details.
The probabilistic choice models that can be fitted to paired-comparison data are the Bradley-Terry-Luce (BTL) model (Bradley, 1984; Luce, 1959), preference tree (Pretree) models (Tversky and Sattath, 1979), and elimination-by-aspects (EBA) models (Tversky, 1972), the former being special cases of the latter.
A
represents the family of aspect sets. It is usually a list of
vectors, the first element of each being a number from 1 to I
;
additional elements specify the aspects shared by several stimuli. A
must have as many elements as there are stimuli. When fitting a BTL model,
A
reduces to 1:I
(the default), i.e. there is only one aspect
per stimulus.
The maximum likelihood estimation of the parameters is carried out by
nlm
. The Hessian matrix, however, is approximated by
nlme::fdHess
. The likelihood functions L.constrained
and
L
are called automatically.
See group.test
for details on the likelihood ratio
tests reported by summary.eba
.
coefficients |
a vector of parameter estimates |
estimate |
same as |
logL.eba |
the log-likelihood of the fitted model |
logL.sat |
the log-likelihood of the saturated (binomial) model |
goodness.of.fit |
the goodness of fit statistic including the likelihood ratio fitted vs. saturated model (-2logL), the degrees of freedom, and the p-value of the corresponding chi-square distribution |
u.scale |
the unnormalized utility scale of the stimuli; each utility scale value is defined as the sum of aspect values (parameters) that characterize a given stimulus |
hessian |
the Hessian matrix of the likelihood function |
cov.p |
the covariance matrix of the model parameters |
chi.alt |
the Pearson chi-square goodness of fit statistic |
fitted |
the fitted paired-comparison matrix |
y1 |
the data vector of the upper triangle matrix |
y0 |
the data vector of the lower triangle matrix |
n |
the number of observations per pair ( |
mu |
the predicted choice probabilities for the upper triangle |
nobs |
the number of pairs |
Florian Wickelmaier
Bradley, R.A. (1984). Paired comparisons: Some basic procedures and examples. In P.R. Krishnaiah & P.K. Sen (eds.), Handbook of Statistics, Volume 4. Amsterdam: Elsevier. doi: 10.1016/S0169-7161(84)04016-5
Luce, R.D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley.
Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79, 281–299. doi: 10.1037/h0032955
Tversky, A., & Sattath, S. (1979). Preference trees. Psychological Review, 86, 542–573. doi: 10.1037/0033-295X.86.6.542
Wickelmaier, F., & Schmid, C. (2004). A Matlab function to estimate choice model parameters from paired-comparison data. Behavior Research Methods, Instruments, and Computers, 36, 29–40. doi: 10.3758/BF03195547
strans
, uscale
, cov.u
,
group.test
, wald.test
, plot.eba
,
residuals.eba
, logLik.eba
,
simulate.eba
,
kendall.u
, circular
, trineq
,
thurstone
, nlm
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | data(celebrities) # absolute choice frequencies
btl1 <- eba(celebrities) # fit Bradley-Terry-Luce model
A <- list(c(1,10), c(2,10), c(3,10),
c(4,11), c(5,11), c(6,11),
c(7,12), c(8,12), c(9,12)) # the structure of aspects
eba1 <- eba(celebrities, A) # fit elimination-by-aspects model
summary(eba1) # goodness of fit
plot(eba1) # residuals versus predicted values
anova(btl1, eba1) # model comparison based on likelihoods
confint(eba1) # confidence intervals for parameters
uscale(eba1) # utility scale
ci <- 1.96 * sqrt(diag(cov.u(eba1))) # 95% CI for utility scale values
dotchart(uscale(eba1), xlim=c(0, .3), main="Choice among celebrities",
xlab="Utility scale value (EBA model)", pch=16) # plot the scale
arrows(uscale(eba1)-ci, 1:9, uscale(eba1)+ci, 1:9, .05, 90, 3) # error bars
abline(v=1/9, lty=2) # indifference line
mtext("(Rumelhart and Greeno, 1971)", line=.5)
## See data(package = "eba") for application examples.
|
Parameter estimates:
Estimate Std. Error z value Pr(>|z|)
1 0.223609 0.024875 8.989 < 2e-16 ***
2 0.121112 0.019596 6.181 6.39e-10 ***
3 0.087820 0.016368 5.365 8.08e-08 ***
4 0.040326 0.009573 4.212 2.53e-05 ***
5 0.016307 0.004648 3.508 0.000451 ***
6 0.040139 0.010089 3.979 6.93e-05 ***
7 0.036679 0.006549 5.601 2.13e-08 ***
8 0.093101 0.012080 7.707 1.29e-14 ***
9 0.143109 0.015352 9.322 < 2e-16 ***
10 0.071635 0.028935 2.476 0.013296 *
11 0.054775 0.009606 5.702 1.19e-08 ***
12 0.056997 0.011805 4.828 1.38e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model tests:
Df1 Df2 logLik1 logLik2 Deviance Pr(>Chi)
Overall 1 72 -763.65 -235.22 1056.85 <2e-16 ***
EBA 11 36 -119.01 -103.93 30.17 0.218
Effect 0 11 -632.36 -119.01 1026.68 <2e-16 ***
Imbalance 1 36 -131.29 -131.29 0.00 1.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC: 260.03
Pearson X2: 30.05
Analysis of Deviance Table
Model 1: btl1
Model 2: eba1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 28 78.217
2 25 30.166 3 48.051 2.077e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2.5 % 97.5 %
1 0.174854396 0.27236420
2 0.082705367 0.15951936
3 0.055739133 0.11990028
4 0.021563011 0.05908851
5 0.007197446 0.02541694
6 0.020365925 0.05991297
7 0.023843491 0.04951395
8 0.069424871 0.11677803
9 0.113018925 0.17319861
10 0.014924158 0.12834630
11 0.035946311 0.07360305
12 0.033860384 0.08013394
LBJ HW CDG JU CY AJF BB
0.21830768 0.14252010 0.11790307 0.07031851 0.05255887 0.07018075 0.06926518
ET SL
0.11098488 0.14796095
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.