Nothing
ebalance <-
function(
Treatment,
X,
base.weight = NULL,
norm.constant = NULL,
coefs = NULL ,
max.iterations = 200,
constraint.tolerance = 1,
print.level=0
){
# Checks
if (sum(Treatment != 1 & Treatment != 0) > 0) {
stop("Treatment indicator ('Treatment') must be a logical variable, TRUE (1) or FALSE (0)")
}
if (var(Treatment) == 0) {
stop("Treatment indicator ('Treatment') must contain both treatment and control observations")
}
Treatment <- as.numeric(Treatment)
X <- as.matrix(X)
if (sum(is.na(X))>0){
stop("X contains missing data")
}
if (sum(is.na(Treatment))>0){
stop("Treatment contains missing data")
}
if (length(Treatment) != nrow(X)) {
stop("length(Treatment) != nrow(X)")
}
if (length(max.iterations) != 1 ) {
stop("length(max.iterations) != 1")
}
if (length(constraint.tolerance) != 1 ) {
stop("length(constraint.tolerance) != 1")
}
# set up elements
ntreated <- sum(Treatment==1)
ncontrols <- sum(Treatment==0)
if (is.null(base.weight)) {
base.weight = rep(1, ncontrols)
}
if ( length(base.weight) != ncontrols) {
stop("length(base.weight) != number of controls sum(Treatment==0)")
}
co.x <- X[Treatment==0,]
co.x <- cbind(rep(1,ncontrols),co.x)
if(qr(co.x)$rank != ncol(co.x)){
stop("collinearity in covariate matrix for controls (remove collinear covariates)")
}
tr.total <- apply(as.matrix(X[Treatment==1, , drop = FALSE]),2,sum)
if (is.null(norm.constant)) {
norm.constant <- ntreated
}
if (length(norm.constant) != 1) {
stop("length(norm.constant) != 1")
}
tr.total <- c(norm.constant,tr.total)
if(is.null(coefs)) {
coefs = c(log(tr.total[1]/sum(base.weight)),rep(0,(ncol(co.x)-1)))
}
if(length(coefs) != ncol(co.x)) {
stop("coefs needs to have same length as number of covariates plus one")
}
## run algo
eb.out <- eb(tr.total=tr.total,
co.x=co.x,
coefs=coefs,
base.weight=base.weight,
max.iterations=max.iterations,
constraint.tolerance=constraint.tolerance,
print.level=print.level
)
if(eb.out$converged == TRUE & print.level>=0) {
cat("Converged within tolerance \n")
}
z <- list(
target.margins = tr.total,
co.xdata = co.x,
w=eb.out$Weights.ebal,
coefs=eb.out$coefs,
maxdiff=eb.out$maxdiff,
norm.constant = norm.constant,
constraint.tolerance=constraint.tolerance,
max.iterations=max.iterations,
base.weight=base.weight,
print.level=print.level,
converged=eb.out$converged
)
class(z) <- "ebalance"
return(z)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.