ebnm_deconvolver | R Documentation |
Solves the empirical Bayes normal means (EBNM) problem using a non-parametric
exponential family with a natural spline basis.
Like ebnm_npmle
, there is no unimodal assumption, but whereas
ebnm_npmle
produces spiky estimates for g
,
ebnm_deconvolver
estimates are much more regular. See
deconvolveR-package
for details and
references. Identical to function ebnm
with argument
prior_family = "deconvolver"
.
ebnm_deconvolver(
x,
s = 1,
scale = "estimate",
g_init = NULL,
fix_g = FALSE,
output = ebnm_output_default(),
control = NULL,
...
)
x |
A vector of observations. Missing observations ( |
s |
Standard errors, which must be uniformly equal to 1 (i.e.,
|
scale |
A deconvolveR prior is a finite mixture of point masses
where parameters |
g_init |
The prior distribution |
fix_g |
If |
output |
A character vector indicating which values are to be returned.
Function |
control |
A list of control parameters to be passed to optimization
function |
... |
Additional parameters to be passed to function
|
An ebnm
object. Depending on the argument to output
, the
object is a list containing elements:
data
A data frame containing the observations x
and standard errors s
.
posterior
A data frame of summary results (posterior means, standard deviations, second moments, and local false sign rates).
fitted_g
The fitted prior \hat{g}
.
log_likelihood
The optimal log likelihood attained,
L(\hat{g})
.
posterior_sampler
A function that can be used to
produce samples from the posterior. The sampler takes a single
parameter nsamp
, the number of posterior samples to return per
observation.
S3 methods coef
, confint
, fitted
, logLik
,
nobs
, plot
, predict
, print
, quantile
,
residuals
, simulate
, summary
, and vcov
have been implemented for ebnm
objects. For details, see the
respective help pages, linked below under See Also.
See ebnm
for examples of usage and model details.
Available S3 methods include coef.ebnm
,
confint.ebnm
,
fitted.ebnm
, logLik.ebnm
,
nobs.ebnm
, plot.ebnm
,
predict.ebnm
, print.ebnm
,
print.summary.ebnm
, quantile.ebnm
,
residuals.ebnm
, simulate.ebnm
,
summary.ebnm
, and vcov.ebnm
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.