ebnm_horseshoe | R Documentation |
Solves the empirical Bayes normal means (EBNM) problem using the family of
horseshoe distributions. Identical to function ebnm
with argument prior_family = "horseshoe"
. For details about the
model, see ebnm
.
ebnm_horseshoe(
x,
s = 1,
scale = "estimate",
g_init = NULL,
fix_g = FALSE,
output = ebnm_output_default(),
control = NULL
)
x |
A vector of observations. Missing observations ( |
s |
A scalar specifying the standard error of the observations (observations must be homoskedastic). |
scale |
A scalar corresponding to |
g_init |
The prior distribution |
fix_g |
If |
output |
A character vector indicating which values are to be returned.
Function |
control |
A list of control parameters to be passed to function
|
An ebnm
object. Depending on the argument to output
, the
object is a list containing elements:
data
A data frame containing the observations x
and standard errors s
.
posterior
A data frame of summary results (posterior means, standard deviations, second moments, and local false sign rates).
fitted_g
The fitted prior \hat{g}
.
log_likelihood
The optimal log likelihood attained,
L(\hat{g})
.
posterior_sampler
A function that can be used to
produce samples from the posterior. The function takes parameters
nsamp
, the number of posterior samples to return per
observation, and burn
, the number of burn-in samples to
discard (an MCMC sampler is used).
S3 methods coef
, confint
, fitted
, logLik
,
nobs
, plot
, predict
, print
, quantile
,
residuals
, simulate
, summary
, and vcov
have been implemented for ebnm
objects. For details, see the
respective help pages, linked below under See Also.
See ebnm
for examples of usage and model details.
Available S3 methods include coef.ebnm
,
confint.ebnm
,
fitted.ebnm
, logLik.ebnm
,
nobs.ebnm
, plot.ebnm
,
predict.ebnm
, print.ebnm
,
print.summary.ebnm
, quantile.ebnm
,
residuals.ebnm
, simulate.ebnm
,
summary.ebnm
, and vcov.ebnm
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.