| ebnm_normal_scale_mixture | R Documentation |
Solves the empirical Bayes normal means (EBNM) problem using the family of
scale mixtures of normals. Identical to function ebnm
with argument prior_family = "normal_scale_mixture". For details
about the model, see ebnm.
ebnm_normal_scale_mixture(
x,
s = 1,
mode = 0,
scale = "estimate",
g_init = NULL,
fix_g = FALSE,
output = ebnm_output_default(),
optmethod = NULL,
control = NULL,
...
)
x |
A vector of observations. Missing observations ( |
s |
A vector of standard errors (or a scalar if all are equal). Standard errors may not be exactly zero, and missing standard errors are not allowed. |
mode |
A scalar specifying the mode of the prior |
scale |
The nonparametric family of scale mixtures of normals is approximated via a finite mixture of normal distributions
where parameters |
g_init |
The prior distribution |
fix_g |
If |
output |
A character vector indicating which values are to be returned.
Function |
optmethod |
A string specifying which optimization function is to be
used. Options are provided by package
|
control |
A list of control parameters to be passed to the
optimization function specified by parameter |
... |
When parameter |
An ebnm object. Depending on the argument to output, the
object is a list containing elements:
dataA data frame containing the observations x
and standard errors s.
posteriorA data frame of summary results (posterior means, standard deviations, second moments, and local false sign rates).
fitted_gThe fitted prior \hat{g}.
log_likelihoodThe optimal log likelihood attained,
L(\hat{g}).
posterior_samplerA function that can be used to
produce samples from the posterior. The sampler takes a single
parameter nsamp, the number of posterior samples to return per
observation.
S3 methods coef, confint, fitted, logLik,
nobs, plot, predict, print, quantile,
residuals, simulate, summary, and vcov
have been implemented for ebnm objects. For details, see the
respective help pages, linked below under See Also.
See ebnm for examples of usage and model details.
Available S3 methods include coef.ebnm,
confint.ebnm,
fitted.ebnm, logLik.ebnm,
nobs.ebnm, plot.ebnm,
predict.ebnm, print.ebnm,
print.summary.ebnm, quantile.ebnm,
residuals.ebnm, simulate.ebnm,
summary.ebnm, and vcov.ebnm.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.