Nothing
# #' This function allows you to get the IPC data
# #' @family dwnld_read
# #' @param folder ruta temporal para descargar el archivo
# #' @importFrom readxl read_xls
# #' @importFrom dplyr slice mutate select everything %>%
# #' @importFrom janitor clean_names excel_numeric_to_date
# #' @importFrom fs path
# #' @importFrom rlang .data
# #' @details
# #' Disclaimer: This script is not an official INE product.
# #' Aviso: El script no es un producto oficial de INE.
# get_ipc <- function(folder = tempdir()){
#
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
#
# u <- "https://www.ine.gub.uy/c/document_library/get_file?uuid=2e92084a-94ec-4fec-b5ca-42b40d5d2826&groupId=10181"
# f <- fs::path(folder, "IPC gral var M_B10.xls")
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# suppressMessages({
# df <- readxl::read_xls(f)
# df <- df %>%
# dplyr::slice(7, 10:length(df[[1]])-3)
# names(df) <- df[1,]
# df <- df[-c(1:4),]
# df <- janitor::clean_names(df) %>%
# dplyr::mutate(fecha = janitor::excel_numeric_to_date(as.numeric(as.character(.data$mes_y_ano)), date_system = "modern")) %>%
# dplyr::select(fecha, dplyr::everything(), -mes_y_ano)
# ipc_base2010 <- df
# })
# }
#' This function allows you to organize dates
#' @family utils
#' @param data data frame with an 'yy' variable for the year, and a 'mm' variable for the month
#' @importFrom dplyr mutate case_when
#' @return data.frame
#' @export
# @examples
# df <- dates_ech()
dates_ech <- function(data) {
data %>% dplyr::mutate(
mm = dplyr::case_when(mm == "enero" ~ "01",
mm == "febrero" ~ "02",
mm == "marzo" ~ "03",
mm == "abril" ~ "04",
mm == "mayo" ~ "05",
mm == "junio" ~ "06",
mm == "julio" ~ "07",
mm == "agosto" ~ "08",
mm == "setiembre" ~ "09",
mm == "octubre" ~ "10",
mm == "noviembre" ~ "11",
TRUE ~ "12"),
dd = "01",
fecha = as.Date(paste(yy, mm, dd, sep = "-")))
}
# #' This function allows you to get the IPC data
# #' @family dwnld_read
# #' @param folder temporal folder
# #' @param region Montevideo ("M") or Interior ("I")
# #' @param sheet sheet number. Default 1.
# #' @importFrom readxl read_xls
# #' @importFrom dplyr slice mutate select everything filter_all slice any_vars bind_rows %>%
# #' @importFrom tidyr gather separate
# #' @importFrom janitor clean_names excel_numeric_to_date
# #' @importFrom fs path
# #' @return data.frame
# #' @details
# #' Disclaimer: This script is not an official INE product.
# #' Aviso: El script no es un producto oficial de INE.
# get_ipc_region <- function(folder = tempdir(), region, sheet = 1){
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
# assertthat::assert_that(region %in% c("M", "I"), msg = "Sorry... :( \n \t region parameter must be 'M' for Montevideo or 'I' for Interior")
#
# if (region == "M") {
# u <- "https://www.ine.gub.uy/c/document_library/get_file?uuid=c7628833-9b64-44a4-ac97-d13353ee79ac&groupId=10181"
# f <- fs::path(folder, "IPC 3.1 indvarinc_ div M_B10_Mon.xls")
# }
# else {
# u <- "https://www.ine.gub.uy/c/document_library/get_file?uuid=61f9e884-781d-44be-9760-6d69f214b5b3&groupId=10181"
# f <- fs::path(folder, "IPC 3.2 indvarinc_ div M_B10_Int.xls")
# }
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# suppressMessages({
# df <- readxl::read_xls(f, sheet = sheet)
# df <- df[,-1] %>% janitor::remove_empty("rows")
# df <- dplyr::bind_rows(dplyr::slice(df, 1), dplyr::filter_all(df, dplyr::any_vars(grepl('ndice General', .))))
# names(df) <- df[1,]
# df <- df[-1,]
# df <- df %>% dplyr::select(dplyr::contains("20")) %>%
# janitor::clean_names()
# df <- df %>% tidyr::gather(fecha, indice, names(df)[1]:names(df)[ncol(df)], factor_key = TRUE) %>%
# tidyr::separate(fecha, into = c("mm", "yy"), sep = "_") %>%
# ech::dates_ech() %>%
# dplyr::select(fecha, indice)
#
# if (region == "M") {
# ipc_base2010_mdeo <- df
# }
# else{
# ipc_base2010_int <- df
# }
# })
# }
# #' This function allows you to get the CBA and CBNA data
# #' @family dwnld_read
# #' @param folder temporal folder
# #' @param region Montevideo ("M"), Interior Urbano ("I"), Interior Rural ("R")
# #' @param sheet sheet number. Default 1.
# #'
# #' @importFrom readxl read_xls
# #' @importFrom dplyr slice mutate bind_cols %>%
# #' @importFrom janitor clean_names excel_numeric_to_date remove_empty
# #' @importFrom fs path
# #' @importFrom purrr map_df
# #' @importFrom curl has_internet
# #'
# #' @return data.frame
# #' @details
# #' Disclaimer: This script is not an official INE product.
# #' Aviso: El script no es un producto oficial de INE.
# get_cba_cbna <- function(folder = tempdir(), region, sheet = 1){
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
# assertthat::assert_that(region %in% c("M", "I", "R"), msg = "Sorry... :( \n \t region parameter must be 'M' for Montevideo, 'I' for Interior urbano or 'R' for Interior rural")
#
# u <- "https://www.ine.gub.uy/c/document_library/get_file?uuid=1675e7d0-6fe0-49bd-bf3f-a46bd6334c0c&groupId=10181"
# f <- fs::path(folder, "CBA_LP_LI_M.xls")
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# suppressMessages({
# df <- readxl::read_xls(f, sheet = sheet)
# date <- df[9:nrow(df),1]
# names(date) <- "fecha"
# date <- date %>%
# dplyr::mutate(fecha = janitor::excel_numeric_to_date(as.numeric(as.character(fecha)), date_system = "modern")) %>%
# janitor::remove_empty("rows")
# df <- df[,-1] %>% janitor::remove_empty("rows") %>% janitor::remove_empty("cols")
#
# if (region == "M") {
# cba_mdeo <- df[, 1:3]
# names(cba_mdeo) <- df[2, 1:3]
# cba_mdeo <- cba_mdeo %>%
# dplyr::slice(-1:-3) %>%
# janitor::clean_names() %>%
# purrr::map_df(as.numeric) %>%
# dplyr::bind_cols(date,.)
# } else if (region == "I") {
# cba_int_urb <- df[, 4:6]
# names(cba_int_urb) <- df[2, 4:6]
# cba_int_urb <- cba_int_urb %>%
# dplyr::slice(-1:-3) %>%
# janitor::clean_names() %>%
# purrr::map_df(as.numeric) %>%
# dplyr::bind_cols(date,.)
# } else {
# cba_int_rur <- df[, 7:9]
# names(cba_int_rur) <- df[2, 7:9]
# cba_int_rur <- cba_int_rur %>%
# dplyr::slice(-1:-3) %>%
# janitor::clean_names() %>%
# purrr::map_df(as.numeric) %>%
# dplyr::bind_cols(date,.)
# }
# })
# }
#
# # This function allows you to get the IPAB (Indice de precios de alimentos y bebidas) data
# # @family dwnld_read
# # @param folder temporal folder
# # @param sheet sheet number. Default 1
# # @importFrom readxl read_xls
# # @importFrom janitor remove_empty
# # @importFrom dplyr bind_rows slice filter_all bind_cols any_vars mutate_all
# # @importFrom tidyr fill
# # @importFrom curl has_internet
# #
# # @return data.frame
# # @details
# # Disclaimer: This script is not an official INE product.
# # Aviso: El script no es un producto oficial de INE.
# get_ipab <- function(folder = tempdir(), sheet = 1){
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
#
# u <- "https://www.ine.gub.uy/c/document_library/get_file?uuid=c4b5efaa-cdd4-497a-ab78-e3138e4f08dc&groupId=10181"
# f <- fs::path(folder, "IPC Div M_B10.xls")
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# suppressMessages({
# df <- readxl::read_xls(f, sheet = sheet)
# df <- df[,-1:-2] %>% janitor::remove_empty("rows")
# df <- dplyr::bind_rows(dplyr::slice(df, 1), dplyr::filter_all(df, dplyr::any_vars(grepl(c('Divisiones'), .))), dplyr::filter_all(df, dplyr::any_vars(grepl(c('Alimentos y Bebidas No Alcoh'), .))))
# df[,1] <- c("yy", "mm", "indice")
# df <- dplyr::bind_cols(t(df[1,]), t(df[2,]), t(df[3,]))
# names(df) <- df[1,]
# df <- df %>% dplyr::slice(-1) %>%
# janitor::remove_empty("rows") %>%
# tidyr::fill(yy) %>%
# dplyr::mutate_all(tolower) %>%
# ech::dates_ech() %>%
# dplyr::select(fecha, indice)
# })
# }
# #' This function allows you to get the IPAB (Indice de precios de alimentos y bebidas) data
# #' @family dwnld_read
# #' @param folder temporal folder
# #' @param region Montevideo ("M"), Interior Urbano ("I")
# #' @param sheet sheet number. Default 1
# #' @importFrom readxl read_xls
# #' @importFrom janitor remove_empty
# #' @importFrom dplyr bind_rows slice filter_all bind_cols any_vars mutate
# #' @importFrom tidyr drop_na separate
# #' @return data.frame
# get_ipab_region <- function(folder = tempdir(), region, sheet = 1){
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
# assertthat::assert_that(region %in% c("M", "I"), msg = "Sorry... :( \n \t region parameter must be 'M' for Montevideo or 'I' for Interior")
#
# if (region == "M") {
# u <- "https://ine.gub.uy/c/document_library/get_file?uuid=c7628833-9b64-44a4-ac97-d13353ee79ac&groupId=10181"
# f <- fs::path(folder, "IPC 3.1 indvarinc_ div M_B10_Mon.xls")
# } else {
# u <- "https://ine.gub.uy/c/document_library/get_file?uuid=61f9e884-781d-44be-9760-6d69f214b5b3&groupId=10181"
# f <- fs::path(folder, "IPC 3.2 indvarinc_ div M_B10_Int.xls")
# }
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# suppressMessages({
# df <- readxl::read_xls(f, sheet = sheet)
# df <- df[,-1] %>% janitor::remove_empty("rows")
# df <- dplyr::bind_rows(dplyr::slice(df, 1), dplyr::filter_all(df, dplyr::any_vars(grepl(c('Alimentos y Bebidas No Alcoh'), .))))
# names(df) <- df[1,]
# df <- df %>% janitor::remove_empty("cols")
# df <- df[,-1]
# df <- t(df)
# df <- data.frame(df) %>%
# tidyr::drop_na() %>%
# tidyr::separate(X1, sep = " ", into = c("mm", "yy"))
# names(df) <- c("mm", "yy", "indice")
# df <- df %>% dplyr::mutate_all(tolower) %>%
# ech::dates_ech() %>%
# dplyr::select(fecha, indice)
#
# if (region == "M") {
# ipab_base2010_mdeo <- df
# }
# else{
# ipab_base2010_int <- df
# }
# })
# }
#' This function allows you to calculate a deflator coefficient
#' @family income
#' @param base_month baseline month
#' @param base_year baseline year
#' @param index IPC or IPAB
#' @param level General index ('G'), Montevideo index ('M') or Interior index ('I')
#' @param df_year ECH year
#' @return vector
#' @importFrom dplyr select slice mutate
#' @importFrom rlang .data
#' @export
#' @details
#' Disclaimer: This script is not an official INE product.
#' Aviso: El script no es un producto oficial de INE.
deflate <- function(base_month = NULL,
base_year = NULL,
index = "IPC",
level = "G",
df_year = NULL) {
assertthat::assert_that(level %in% c("G", "M", "I"), msg = "Sorry... :( \n \t level parameter must be 'G' for General, 'M' for Montevideo or 'I' for Interior")
assertthat::assert_that(index %in% c("IPC", "IPAB"), msg = "Sorry... :( \n \t index parameter must be 'IPC' or 'IPAB'")
if (nchar(as.character(base_month)) == 1) {
base_month <- paste0("0", base_month)
}
if (index == "IPC" & level == "G") {
df <- ech::ipc_base2010
} else if (index == "IPC" & level == "M") {
df <- ech::ipc_base2010_mdeo
} else if (index == "IPC" & level == "I") {
df <- ech::ipc_base2010_int
} else if (index == "IPAB" & level == "G") {
df <- ech::ipab_base2010
} else if (index == "IPAB" & level == "M") {
df <- ech::ipab_base2010_mdeo
} else {
df <- ech::ipab_base2010_int
}
mes_base <- df %>%
dplyr::filter(fecha == paste0(base_year, "-", base_month, "-01")) %>%
dplyr::select(indice) %>%
as.numeric()
rows1 <- which(df$fecha == paste0(as.numeric(df_year) - 1, "-",12, "-01"))
rows2 <- which(df$fecha == paste0(df_year, "-",11, "-01"))
indice <- df %>%
dplyr::slice(rows1:rows2) %>%
dplyr::select(indice)
indice <- as.numeric(indice$indice)
deflator <- dplyr::bind_cols(deflator = mes_base/indice, mes = 1:12)
}
#' This function allows you to get the Basket goods
#' @family income
#' @param data data.frame with the price of the basket of goods from Montevideo, Interior or Rural region
#' @param year the ECH year
#' @return data.frame
#' @export
#' @details
#' Disclaimer: This script is not an official INE product.
#' Aviso: El script no es un producto oficial de INE.
#'
#' @examples
#' df <- basket_goods(data = ech::cba_cbna_mdeo, year = 2018)
basket_goods <- function(data = ech::cba_cbna_mdeo,
year = NULL){
assertthat::assert_that(is.data.frame(data), msg = "Sorry... :( \n \t data parameter must be data.frame")
#ech::cba_cbna_int, ech::cba_cbna_rur
rows1 <- which(data$fecha == paste0(as.numeric(year) - 1, "-",12, "-01"))
rows2 <- which(data$fecha == paste0(year, "-",11, "-01"))
df <- data %>%
dplyr::slice(rows1:rows2)
}
#' This function allows you to labelled variables
#' @family utils
#' @param data data frame
#' @importFrom dplyr select mutate
#' @importFrom haven is.labelled
#' @importFrom labelled to_factor
#' @return data.frame
#' @export
#' @examples
#' df <- unlabelled(data = ech::toy_ech_2018)
unlabelled <- function(data = NULL){
assertthat::assert_that(is.data.frame(data), msg = "Sorry... :( \n \t data parameter must be data.frame")
d <- data %>% dplyr::mutate_if(haven::is.labelled, labelled::to_factor) #%>%
#dplyr::mutate_if(is.factor, as.character)
}
#' This function allows you to calculate age groups
#' @family demographic
#' @param data data.frame
#' @param cut breaks points to cut a numeric variable
#' @param e27 Variable name of age
#' @return data.frame
#' @importFrom dplyr mutate
#' @importFrom haven labelled
#' @importFrom labelled var_label
#' @export
#'
#' @examples
#'#' toy_ech_2018 <- age_groups(data = ech::toy_ech_2018, cut = c(0, 4, 11, 17, 24))
age_groups <- function(data = ech::toy_ech_2018,
cut = c(0, 4, 11, 17, 24),
e27 = "e27") {
assertthat::assert_that(is.data.frame(data), msg = glue:glue("Sorry... :( \n \t data parameter must be data.frame"))
assertthat::assert_that(is.numeric(cut), msg = glue:glue("Sorry... :( \n \t cut parameter must be a numeric vector"))
assertthat::assert_that(e27 %in% names(data), msg = glue:glue("Sorry... :( \n \t {e27} is not in data"))
if (min(data %>% dplyr::pull(e27)) < min(cut)) {
cut <- c(min(data %>% dplyr::pull(e27)), cut)
}
if (max(dplyr::pull(data[, e27])) > max(cut)) {
cut <- c(cut, max(data %>% dplyr::pull(e27)))
}
data <- data %>% dplyr::mutate(age_groups = cut(e27, breaks = cut, include.lowest = TRUE, ordered_result = TRUE, labels = FALSE),
age_groups = haven::labelled(age_groups, label = "Grupos de edad"))
return(data)
}
#' This function allows you to fix ht11 from 2013 to 2015
#' @family income
#' @param data data.frame
#' @param year survey year
#' @param ht11 Variable name of ht11
#' @param numero Variable name of numero
#'
#' @return data.frame
#' @export
#'
#' @examples
#' toy_ech_2018 <- organize_ht11(data = ech::toy_ech_2018, year = 2018)
organize_ht11 <- function(data, year, ht11 = "ht11", numero = "numero") {
assertthat::assert_that(is.data.frame(data), msg = glue:glue("Sorry... :( \n \t data parameter must be data.frame"))
assertthat::assert_that(is.numeric(year), msg = glue:glue("Sorry... :( \n \t year parameter must be a numeric value"))
assertthat::assert_that(ht11 %in% names(data), msg = glue:glue("Sorry... :( \n \t {ht11} is not in data"))
assertthat::assert_that(numero %in% names(data), msg = glue:glue("Sorry... :( \n \t {numero} is not in data"))
if (year %in% 2013:2015) {
data <- data %>%
dplyr::group_by(numero) %>%
dplyr::mutate(ht11 = max(ht11)) %>%
dplyr::ungroup()
}
return(data)
}
#' This function allows you to fix education variables from 2021
#' @family education
#' @param data data.frame
#' @param year survey year
#' @param e49 Variable name of e49
#' @param e579 Variable name of e579
#' @param numero Variable name of numero
#'
#' @return data.frame
#' @export
organize_educ <- function(data, year, e49 = "e49", e579 = "e579", numero = "numero") {
assertthat::assert_that(is.data.frame(data), msg = glue:glue("Sorry... :( \n \t data parameter must be data.frame"))
assertthat::assert_that(is.numeric(year), msg = glue:glue("Sorry... :( \n \t year parameter must be a numeric value"))
assertthat::assert_that(e49 %in% names(data), msg = glue:glue("Sorry... :( \n \t {e49} is not in data"))
assertthat::assert_that(e579 %in% names(data), msg = glue:glue("Sorry... :( \n \t {e579} is not in data"))
assertthat::assert_that(numero %in% names(data), msg = glue:glue("Sorry... :( \n \t {numero} is not in data"))
if (year %in% 2021:2022) {
data <- data %>%
dplyr::mutate(e193 = ifelse(e49 == 3 & e579 == 1, 1, # Variable name of attendance preescolar
ifelse(e49 == 2 & e579 == 1, 3,
ifelse(e49 == 1 & e579 == 1, 2, 0))),
e197 = ifelse(e49 == 3 & e579 %in% c(2, 3), 1, # Variable name of attendance primary
ifelse(e49 == 2 & e579 %in% c(2, 3), 3,
ifelse(e49 == 1 & e579 %in% c(2, 3), 2, 0))),
e201 = ifelse(e49 == 3 & e579 %in% c(4, 6), 1, # Variable name of attendance secondary
ifelse(e49 == 2 & e579 %in% c(4, 6), 3,
ifelse(e49 == 1 & e579 %in% c(4, 6), 2, 0))),
e212 = ifelse(e49 == 3 & e579 %in% c(5, 7, 8), 1,# Variable name of attendance technical school (non-university)
ifelse(e49 == 2 & e579 %in% c(5, 7, 8), 3,
ifelse(e49 == 1 & e579 %in% c(5, 7, 8), 2, 0))),
e215 = ifelse(e49 == 3 & e579 == 9, 1, # Variable name of attendance magisterio
ifelse(e49 == 2 & e579 == 9, 3,
ifelse(e49 == 1 & e579 == 9, 2, 0))),
e218 = ifelse(e49 == 3 & e579 == 10, 1, # Variable name of attendance university
ifelse(e49 == 2 & e579 == 10, 3,
ifelse(e49 == 1 & e579 == 10, 2, 0))),
e221 = ifelse(e49 == 3 & e579 == 11, 1, # Variable name of attendance tertiary
ifelse(e49 == 2 & e579 == 11, 3,
ifelse(e49 == 1 & e579 == 11, 2, 0))),
e224 = ifelse(e49 == 3 & e579 == 12, 1, # Variable name of attendance postgrade
ifelse(e49 == 2 & e579 == 12, 3,
ifelse(e49 == 1 & e579 == 12, 2, 0))),
e201_1 = e201_1c, # finalizo nivel edu media
e212_1 = ifelse(e201_1d == 1, e201_1d, e201_1b)) # finalizo nivel edu tecnica
if (!any(colnames(data) %in% c("e51_4", "e51_7"))) {
data <- data %>%
dplyr::mutate(e51_4 = e51_4_a, e51_7 = e51_4_b)
}
}
return(data)
}
# #' This function allows you to get the CIIU data
# #' @family dwnld_read
# #' @param folder temp folder
# #' @param version by default the last ciiu version
# #' @importFrom utils read.csv
# #' @importFrom pdftables convert_pdf
# #' @importFrom rstudioapi askForSecret
# #' @export
# #' @details
# #' Disclaimer: This script is not an official INE product.
# #' Aviso: El script no es un producto oficial de INE.
#
# get_ciiu <- function(folder = tempdir(),
# version = 4){
# assertthat::assert_that(is.character(folder), msg = "Sorry... :( \n \t folder parameter must be character")
# assertthat::assert_that(is.numeric(version), msg = "Sorry... :( \n \t version parameter must be numeric")
# assertthat::assert_that(.x = curl::has_internet(), msg = "No internet access was detected. Please check your connection.")
# u <- "https://www.ine.gub.uy/documents/10181/33330/CORRESPONDENCIA+CIUU4+A+CIUU3.pdf/623c43cb-009c-4da9-b48b-45282745063b"
# f <- fs::path(folder, "ciiu4.pdf")
# if (identical(.Platform$OS.type, "unix")) {
# try(utils::download.file(u, f, mode = 'wb', method = 'wget'))
# } else {
# try(utils::download.file(u, f, mode = 'wb', method = 'libcurl'))
# }
# key <- rstudioapi::askForSecret("api_key")
# pdftables::convert_pdf(f, "ciiu4.csv",api_key = key)
# df <- read.csv("ciiu4.csv")
# df <- df[,-3]
# names(df) <- c("ciiu_4","description", "ciiu_3")
# df <- df[-1,]
# df[] <- lapply(df, textclean::replace_non_ascii)
# ciiu4 <- df
# }
#' Pipe operator
#' See \code{dplyr::\link[dplyr]{\%>\%}} for details.
#' @name %>%
#' @rdname pipe
#' @keywords internal
#' @export
#' @importFrom dplyr %>%
#' @usage lhs \%>\% rhs
#' @return No return value, called for side effects
NULL
#' add_geom
#' See \code{geouy::\link[geouy]{add_geom}} for details.
#' @return sf and data.frame object
#' @name add_geom
#' @rdname add_geom
#' @keywords internal
#' @export
#' @importFrom geouy add_geom
NULL
#' plot_geouy
#' See \code{geouy::\link[geouy]{plot_geouy}} for details.
#' @return ggplot object of a choropleth map with x geometries and col values.
#' @name plot_geouy
#' @rdname plot_geouy
#' @keywords internal
#' @export
#' @importFrom geouy plot_geouy
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.