The different UniFrac algorithms are listed below, along with examples for calculating them.
library(ecodive) counts <- matrix( data = c(0, 0, 9, 3, 3, 1, 4, 2, 8, 0), ncol = 2, dimnames = list(paste0('Species_', 1:5), c('Sample_A', 'Sample_B')) ) tree <- read_tree( underscores = TRUE, newick = " (((Species_1:0.8,Species_2:0.5):0.4,Species_3:0.9):0.2,(Species_4:0.7,Species_5:0.3):0.6);" ) L <- tree$edge.length A <- c(9,0,0,0,9,6,3,3) B <- c(7,5,1,4,2,8,8,0) # local({ # man/figures/unifrac-tree.png # # par(xpd = NA) # ape::plot.phylo( # x = tree, # direction = 'downwards', # srt = 90, # adj = 0.5, # no.margin = TRUE, # underscore = TRUE, # x.lim = c(0.5, 5.5) ) # # ape::edgelabels(tree$edge.length, bg = 'white', frame = 'none', adj = -0.4) # }) # # local({ # man/figures/unifrac-weights.png # # tree$edge.length <- c(1, 1, 1, 1, 2, 1, 2, 2) # # par(xpd = NA) # ape::plot.phylo( # x = tree, # direction = 'downwards', # srt = 90, # adj = 0.5, # no.margin = TRUE, # underscore = TRUE, # x.lim = c(.8, 6) ) # # ape::edgelabels(1:8, frame = 'circle') # # ape::edgelabels(paste('A =', A), bg = 'white', frame = 'none', adj = c(-0.4, -1.2)) # ape::edgelabels(paste('B =', B), bg = 'white', frame = 'none', adj = c(-0.4, 0.0)) # ape::edgelabels(paste('L =', L), bg = 'white', frame = 'none', adj = c(-0.3, 1.2)) # })
|
knitr::include_graphics('../man/figures/unifrac-tree.png') |
The branch indices (green circles) are used for ordering the $L$, $A$, and $B$ arrays. Values for $L$ are drawn from the input phylogenetic tree. Values for $A$ and $B$ are the total number of species observations descending from that branch; $A$ for Sample_A, and $B$ for Sample_B.
knitr::include_graphics('../man/figures/unifrac-weights.png')
$n = 8$ | Number of branches |
$A = \{`r A`\}$ | Branch **weights** for Sample_A. |
$B = \{`r B`\}$ | Branch **weights** for Sample_B. |
$A_T = 15$ | Total observations for Sample_A. |
$B_T = 15$ | Total observations for Sample_B. |
$L = \{`r L`\}$ | The branch **lengths**. |
unweighted_unifrac()
unweighted_unifrac()
UniFrac(weighted=FALSE)
qiime diversity beta-phylogenetic --p-metric unweighted_unifrac
unifrac.unweighted()
First, transform A and B into presence (1) and absence (0) indicators.
\begin{align*} A &= \{`r A`\} \\ A' &= \{`r as.numeric(A > 0)`\} \end{align*} | \begin{align*} B &= \{`r B`\} \\ B' &= \{`r as.numeric(B > 0)`\} \end{align*} |
Then apply the formula:
\begin{align} U &= \displaystyle \frac{\sum_{i = 1}^{n} L_i(|A'i - B'_i|)}{\sum{i = 1}^{n} L_i(max(A'_i,B'_i))} \ \ U &= \displaystyle \frac{L_1(|A'_1-B'_1|) + L_2(|A'_2-B'_2|) + \cdots + L_n(|A'_n-B'_n|)}{L_1(max(A'_1,B'_1)) + L_2(max(A'_2,B'_2)) + \cdots + L_n(max(A'_n,B'_n))} \ \ U &= \displaystyle \frac{0.2(|1-1|) + 0.4(|0-1|) + \cdots + 0.3(|1-0|)}{0.2(max(1,1)) + 0.4(max(0,1)) + \cdots + 0.3(max(1,0))} \ \ U &= \displaystyle \frac{0.2(0) + 0.4(1) + 0.8(1) + 0.5(1) + 0.9(0) + 0.6(0) + 0.7(0) + 0.3(1)}{0.2(1) + 0.4(1) + 0.8(1) + 0.5(1) + 0.9(1) + 0.6(1) + 0.7(1) + 0.3(1)} \ \ U &= \displaystyle \frac{0.4 + 0.8 + 0.5 + 0.3}{0.2 + 0.4 + 0.8 + 0.5 + 0.9 + 0.6 + 0.7 + 0.3} \ \ U &= \displaystyle \frac{2}{4.4} \ \ U &= 0.4545455 \end{align}
weighted_unifrac()
weighted_unifrac()
UniFrac(weighted=TRUE, normalized=FALSE)
qiime diversity beta-phylogenetic --p-metric weighted_unifrac
\begin{align} W &= \sum_{i = 1}^{n} L_i|\frac{A_i}{A_T} - \frac{B_i}{B_T}| \ \ W &= L_1|\frac{A_1}{A_T} - \frac{B_1}{B_T}| + L_2|\frac{A_2}{A_T} - \frac{B_2}{B_T}| + \cdots + L_n|\frac{A_n}{A_T} - \frac{B_n}{B_T}| \ \ W &= 0.2|\frac{9}{15} - \frac{7}{15}| + 0.4|\frac{0}{15} - \frac{5}{15}| + \cdots + 0.3|\frac{3}{15} - \frac{0}{15}| \ \ W &= 0.02\overline{6} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.42 + 0.08 + 0.2\overline{3} + 0.06 \ \ W &= 1.14 \end{align}
weighted_normalized_unifrac()
weighted_normalized_unifrac()
UniFrac(weighted=TRUE, normalized=TRUE)
qiime diversity beta-phylogenetic --p-metric weighted_normalized_unifrac
unifrac.weighted()
\begin{align*}
N &= \displaystyle \frac {\sum_{i = 1}^{n} L_i|\frac{A_i}{A_T} - \frac{B_i}{B_T}|} {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})} \ \
N &= \displaystyle \frac {L_1|\frac{A_1}{A_T} - \frac{B_1}{B_T}| + L_2|\frac{A_2}{A_T} - \frac{B_2}{B_T}| + \cdots + L_n|\frac{A_n}{A_T} - \frac{B_n}{B_T}|} {L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T}) + L_2(\frac{A_2}{A_T} + \frac{B_2}{B_T}) + \cdots + L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})} \ \
N &= \displaystyle \frac {0.2|\frac{9}{15} - \frac{7}{15}| + 0.4|\frac{0}{15} - \frac{5}{15}| + \cdots + 0.3|\frac{3}{15} - \frac{0}{15}|} {0.2(\frac{9}{15} + \frac{7}{15}) + 0.4(\frac{0}{15} + \frac{5}{15}) + \cdots + 0.3(\frac{3}{15} + \frac{0}{15})} \ \
N &= \displaystyle \frac {0.02\overline{6} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.42 + 0.08 + 0.2\overline{3} + 0.06} {0.21\overline{3} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.66 + 0.56 + 0.51\overline{3} + 0.06} \ \
N &= \displaystyle \frac{1.14}{2.326667} \ \ N &= 0.4899713 \end{align*}
generalized_unifrac(alpha = 0.5)
generalized_unifrac(alpha = 0.5)
GUniFrac(alpha = 0.5)
qiime diversity beta-phylogenetic --p-metric generalized_unifrac -a 0.5
\begin{align*}
G &= \displaystyle \frac {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})^{\alpha} |\displaystyle \frac {\frac{A_i}{A_T} - \frac{B_i}{B_T}} {\frac{A_i}{A_T} + \frac{B_i}{B_T}} |} {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})^{\alpha}} \ \
G &= \displaystyle \frac
{
L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T})^{0.5}
|\displaystyle \frac
{\frac{A_1}{A_T} - \frac{B_1}{B_T}}
{\frac{A_1}{A_T} + \frac{B_1}{B_T}}| +
\cdots +
L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})^{0.5}
|\displaystyle \frac
{\frac{A_n}{A_T} - \frac{B_n}{B_T}}
{\frac{A_n}{A_T} + \frac{B_n}{B_T}}|
}{
L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T})^{0.5} +
\cdots +
L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})^{0.5}
}
\ \
G &= \displaystyle \frac
{
0.2(\frac{9}{15} + \frac{7}{15})^{0.5}
|\displaystyle \frac
{\frac{9}{15} - \frac{7}{15}}
{\frac{9}{15} + \frac{7}{15}}| +
\cdots +
0.3(\frac{3}{15} + \frac{0}{15})^{0.5}
|\displaystyle \frac
{\frac{3}{15} - \frac{0}{15}}
{\frac{3}{15} + \frac{0}{15}}|
}{
0.2(\frac{9}{15} + \frac{7}{15})^{0.5} +
\cdots +
0.3(\frac{3}{15} + \frac{0}{15})^{0.5}
}
\ \
G &\approx \displaystyle \frac {0.03 + 0.23 + 0.21 + 0.26 + 0.49 + 0.08 + 0.27 + 0.13} {0.21 + 0.23 + 0.21 + 0.26 + 0.77 + 0.58 + 0.60 + 0.13} \ \
G &= \displaystyle \frac{1.701419}{2.986235} \ \ G &= 0.569754
\end{align*}
variance_adjusted_unifrac()
variance_adjusted_unifrac()
qiime diversity beta-phylogenetic --p-metric weighted_normalized_unifrac --p-variance-adjusted
\begin{align*}
V &= \displaystyle \frac {\sum_{i = 1}^{n} L_i\displaystyle \frac {|\frac{A_i}{A_T} - \frac{B_i}{B_T}|} {\sqrt{(A_i + B_i)(A_T + B_T - A_i - B_i)}} } {\sum_{i = 1}^{n} L_i\displaystyle \frac {\frac{A_i}{A_T} + \frac{B_i}{B_T}} {\sqrt{(A_i + B_i)(A_T + B_T - A_i - B_i)}} } \ \
V &= \displaystyle \frac
{
L_1\displaystyle \frac
{|\frac{A_1}{A_T} - \frac{B_1}{B_T}|}
{\sqrt{(A_1 + B_1)(A_T + B_T - A_1 - B_1)}} +
\cdots +
L_n\displaystyle \frac
{|\frac{A_n}{A_T} - \frac{B_n}{B_T}|}
{\sqrt{(A_n + B_n)(A_T + B_T - A_n - B_n)}}
}{
L_1\displaystyle \frac
{\frac{A_1}{A_T} + \frac{B_1}{B_T}}
{\sqrt{(A_1 + B_1)(A_T + B_T - A_1 - B_1)}} +
\cdots +
L_n\displaystyle \frac
{\frac{A_n}{A_T} + \frac{B_n}{B_T}}
{\sqrt{(A_n + B_n)(A_T + B_T - A_n - B_n)}}
}
\ \
V &= \displaystyle \frac
{
0.2\displaystyle \frac
{|\frac{9}{15} - \frac{7}{15}|}
{\sqrt{(9 + 7)(15 + 15 - 9 - 7)}} +
\cdots +
0.3\displaystyle \frac
{|\frac{3}{15} - \frac{0}{15}|}
{\sqrt{(3 + 0)(15 + 15 - 3 - 0)}}
}{
0.2\displaystyle \frac
{\frac{9}{15} + \frac{7}{15}}
{\sqrt{(9 + 7)(15 + 15 - 9 - 7)}} +
\cdots +
0.3\displaystyle \frac
{\frac{3}{15} + \frac{0}{15}}
{\sqrt{(3 + 0)(15 + 15 - 3 - 0)}}
}
\ \
V &\approx \displaystyle \frac {0.002 + 0.012 + 0.010 + 0.013 + 0.029 + 0.005 + 0.016 + 0.007} {0.014 + 0.012 + 0.010 + 0.013 + 0.046 + 0.037 + 0.036 + 0.007} \ \
V &= \displaystyle \frac{4.09389}{4.174402} \ \ V &= 0.9807128
\end{align*}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.