Nothing
#' Complexity Measures
#'
#' @description \code{complexity_measures()} computes the Economic Complexity
#' Index and the Product Complexity Index.
#'
#' @details The current implementation follows
#' \insertCite{measuringcomplexity2015}{economiccomplexity} to obtain different
#' alternatives that account for diversification in bipartite relations.
#'
#' @return A list of two named numeric vectors.
#'
#' @param balassa_index (Type: dgCMatrix) the output from
#' \code{balassa_index()}) or an equivalent arrangement.
#' @param method (Type: character) one of these methods: fitness,
#' reflections or eigenvalues. By default this is set to \code{"fitness"}.
#' @param iterations (Type: numeric) the number of iterations to use.
#' By default this is set to \code{20}.
#' @param extremality (Type: numeric) the parameter to use in the fitness
#' method. The other methods don't use this parameter.
#' By default this is set to \code{1}.
#'
#' @importFrom Matrix rowSums colSums
#' @importFrom stats cor
#'
#' @examples
#' co <- complexity_measures(economiccomplexity_output$balassa_index)
#'
#' # partial view of indexes
#' co$complexity_index_country[1:5]
#' co$complexity_index_product[1:5]
#'
#' @references
#' For more information on this index see:
#'
#' \insertRef{measuringcomplexity2015}{economiccomplexity}
#'
#' and the references therein.
#'
#' @keywords functions
#'
#' @export
complexity_measures <- function(balassa_index, method = "fitness", iterations = 20, extremality = 1) {
# sanity checks ----
if (!(any(class(balassa_index) %in% "dgCMatrix") == TRUE)) {
stop("'balassa_index' must be a dgCMatrix")
}
if (!(any(method %in% c("fitness", "reflections", "eigenvalues")) == TRUE)) {
stop("'method' must be 'fitness', 'reflections' or 'eigenvalues'")
}
if (!is.integer(iterations)) {
iterations <- as.integer(iterations)
if (iterations < 2L) {
stop("'iterations' must be integer and >= 2")
}
}
if (iterations %% 2 != 0) {
iterations <- iterations + 1
warning("'iterations' was changed to 'iterations + 1' to work with an even number of iterations")
}
# compute complexity measures ----
rows_balassa_index <- rowSums(balassa_index)[rowSums(balassa_index) > 0]
cols_balassa_index <- colSums(balassa_index)[colSums(balassa_index) > 0]
balassa_index <- balassa_index[
rownames(balassa_index) %in% names(rows_balassa_index),
colnames(balassa_index) %in% names(cols_balassa_index)
]
if (method == "fitness") {
fitness_output <- fitness_method(balassa_index, iterations, extremality)
xci <- fitness_output$xci
yci <- fitness_output$yci
}
if (method == "reflections") {
reflections_output <- reflections_method(balassa_index, iterations)
xci <- reflections_output$xci
yci <- reflections_output$yci
}
if (method == "eigenvalues") {
# to check if a sign correction is needed
reflections_output <- reflections_method(balassa_index, iterations)
xci_r <- reflections_output$xci
yci_r <- reflections_output$yci
eigenvalues_output <- eigenvalues_method(balassa_index, iterations)
xci <- eigenvalues_output$xci
yci <- eigenvalues_output$yci
# correct xci sign when required
if (isTRUE(cor(xci, xci_r, use = "pairwise.complete.obs") < 0)) {
xci <- (-1) * xci
}
# correct yci sign when required
if (isTRUE(cor(yci, yci_r, use = "pairwise.complete.obs") < 0)) {
yci <- (-1) * yci
}
}
return(
list(
complexity_index_country = xci,
complexity_index_product = yci
)
)
}
#' Fitness Method
#' @param balassa_index (Type: dgCMatrix) the output from
#' \code{balassa_index()}) or an equivalent arrangement.
#' @param iterations (Type: numeric) the number of iterations to use.
#' By default this is set to \code{20}.
#' @param extremality (Type: numeric) the parameter to use in the fitness
#' method. The other methods don't use this parameter.
#' By default this is set to \code{1}.
#' @importFrom Matrix Matrix crossprod
#' @importFrom stats setNames
#' @keywords internal
fitness_method <- function(balassa_index, iterations, extremality) {
# create empty matrices
kx <- Matrix(0,
nrow = nrow(balassa_index), ncol = iterations,
sparse = TRUE,
forceCheck = TRUE
)
ky <- Matrix(0,
nrow = ncol(balassa_index), ncol = iterations,
sparse = TRUE,
forceCheck = TRUE
)
# fill the first columns with rowSums(balassa_index) and colSums(balassa_index) to start iterating
kx[, 1] <- 1
ky[, 1] <- 1
# compute cols 2 to "no. of iterations" by iterating from col 1
for (j in 2:ncol(kx)) {
kx[, j] <- balassa_index %*% ky[, (j - 1)]
kx[, j] <- kx[, j] / mean(kx[, j], na.rm = T)
ky[, j] <- 1 / (crossprod(balassa_index, (1 / kx[, (j - 1)])^extremality))^(1 / extremality)
ky[, j] <- ky[, j] / mean(ky[, j], na.rm = T)
}
return(
list(
xci = setNames(
kx[, iterations],
rownames(balassa_index)
),
yci = setNames(
ky[, iterations],
colnames(balassa_index)
)
)
)
}
#' Reflections Method
#' @param balassa_index (Type: dgCMatrix) the output from
#' \code{balassa_index()}) or an equivalent arrangement.
#' @param iterations (Type: numeric) the number of iterations to use.
#' By default this is set to \code{20}.
#' @importFrom Matrix Matrix crossprod
#' @importFrom stats sd setNames
#' @keywords internal
reflections_method <- function(balassa_index, iterations) {
# create empty matrices
kx <- Matrix(0,
nrow = nrow(balassa_index), ncol = iterations,
sparse = TRUE,
forceCheck = TRUE
)
ky <- Matrix(0,
nrow = ncol(balassa_index), ncol = iterations,
sparse = TRUE,
forceCheck = TRUE
)
# fill the first columns with rowSums(balassa_index) and colSums(balassa_index) to start iterating
kx[, 1] <- rowSums(balassa_index)
ky[, 1] <- colSums(balassa_index)
# compute cols 2 to "no. of iterations" by iterating from col 1
for (j in 2:ncol(kx)) {
kx[, j] <- (balassa_index %*% ky[, (j - 1)]) / rowSums(balassa_index)
ky[, j] <- (crossprod(balassa_index, kx[, (j - 1)])) / colSums(balassa_index)
}
# xci is of odd order and normalized
# yci is of even order and normalized
return(
list(
xci = setNames(
(kx[, iterations - 1] - mean(kx[, iterations - 1], na.rm = T)) /
sd(kx[, iterations - 1], na.rm = T),
rownames(balassa_index)
),
yci = setNames(
(ky[, iterations] - mean(ky[, iterations], na.rm = T)) /
sd(ky[, iterations], na.rm = T),
colnames(balassa_index)
)
)
)
}
#' Eigenvalues Method
#' @param balassa_index (Type: dgCMatrix) the output from
#' \code{balassa_index()}) or an equivalent arrangement.
#' @param iterations (Type: numeric) the number of iterations to use.
#' By default this is set to \code{20}.
#' @importFrom Matrix Matrix t
#' @importFrom stats sd setNames
#' @keywords internal
eigenvalues_method <- function(balassa_index, iterations) {
# compute eigenvalues for xci
xci <- eigen((balassa_index / rowSums(balassa_index)) %*% (t(balassa_index) / colSums(balassa_index)))
xci <- Re(xci$vectors[, 2])
# compute eigenvalues for yci
yci <- eigen((t(balassa_index) / colSums(balassa_index)) %*% (balassa_index / rowSums(balassa_index)))
yci <- Re(yci$vectors[, 2])
return(
list(
xci = setNames(
(xci - mean(xci, na.rm = T)) / sd(xci, na.rm = T),
rownames(balassa_index)
),
yci = setNames(
(yci - mean(yci, na.rm = T)) / sd(yci, na.rm = T),
colnames(balassa_index)
)
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.