Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(eider)
library(magrittr)
## -----------------------------------------------------------------------------
input_table <- data.frame(
id = c(1, 1, 1, 1),
admission_date = as.Date(c(
"2015-01-01", "2016-01-01", "2016-01-04", "2017-01-01"
)),
discharge_date = as.Date(c(
"2015-01-05", "2016-01-04", "2016-01-08", "2017-01-08"
)),
cis_marker = c(1, 2, 2, 3),
episode_within_cis = c(1, 1, 2, 1),
diagnosis = c("A", "B", "C", "B")
)
input_table
## ----comment='', echo=FALSE---------------------------------------------------
writeLines(readLines("json_examples/preprocessing1.json"))
## -----------------------------------------------------------------------------
results <- run_pipeline(
data_sources = list(input_table = input_table),
feature_filenames = "json_examples/preprocessing1.json"
)
results$features
## -----------------------------------------------------------------------------
processed_table <- input_table %>%
dplyr::group_by(id, cis_marker) %>%
dplyr::mutate(
admission_date = min(admission_date),
discharge_date = max(discharge_date)
) %>%
dplyr::ungroup()
processed_table
## ----comment='', echo=FALSE---------------------------------------------------
writeLines(readLines("json_examples/preprocessing2.json"))
## -----------------------------------------------------------------------------
results <- run_pipeline(
data_sources = list(input_table = input_table),
feature_filenames = "json_examples/preprocessing2.json"
)
results$features
## -----------------------------------------------------------------------------
input_table_with_sum <- input_table %>%
dplyr::mutate(days = as.numeric(discharge_date - admission_date))
input_table_with_sum
## ----comment='', echo=FALSE---------------------------------------------------
writeLines(readLines("json_examples/preprocessing3.json"))
## -----------------------------------------------------------------------------
results <- run_pipeline(
data_sources = list(input_table = input_table_with_sum),
feature_filenames = "json_examples/preprocessing3.json"
)
results$features
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.