tidyst_kquiver | R Documentation |
Tidy and geospatial versions of a kernel density quiver estimate for 2-dimensional data.
tidy_kquiver(data, thin=5, transf=1/4, neg.grad=FALSE)
st_kquiver(x, thin=5, transf=1/4, neg.grad=FALSE, scale=1)
data |
tidy kernel density gradient estimate (output from |
x |
geospatial kernel density gradient estimate (output from |
thin |
number to thin out estimation grid. Default is 5. |
transf |
power index in transformation. Default is 1/4. |
neg.grad |
flag to compute arrows in negative gradient direction. Default is FALSE. |
scale |
scale factor to normalise length of arrows. Default is 1. |
A kernel quiver estimate is a modification of the standard kernel density gradient estimate in *_kdde
where the density derivatives are not given in the separate groups as indexed in deriv_group
, but as extra columns u
(for deriv_group=(1,0)
) and v
(for deriv_group=(0,1)
).
The bandwidth matrix of smoothing parameters is computed as in ks::kdde(deriv_order=1)
.
The output from tidy_kquiver
has the same structure as the input kernel density gradient estimate, with the added columns u,v
for the density gradient value in the x
-, y
-axis. This structure is compatible with the ggquiver::geom_quiver
layer function for quiver plots.
Since ggquiver::geom_quiver
is not compatible with geom_sf
layers, the output from st_kquiver
has added columns lon
, lat
, lon_end
, lat_end
, len
which are required in geom_segment
.
## tidy kernel quiver estimate
library(ggplot2)
data(crabs, package="MASS")
crabs2 <- dplyr::select(crabs, FL, CW)
t1 <- tidy_kde(crabs2)
t2 <- tidy_kdde(crabs2, deriv_order=1)
t3 <- tidy_kquiver(t2, thin=5)
gt <- ggplot(t1, aes(x=FL, y=CW))
gt + geom_contour_filled_ks(colour="grey50", cont=seq(10,90,by=10)) +
colorspace::scale_fill_discrete_sequential(alpha=0.5) +
ggquiver::geom_quiver(data=t3, aes(u=u, v=v), colour=6)
## geospatial kernel `quiver' estimate
data(wa)
data(grevilleasf)
hakeoides <- dplyr::filter(grevilleasf, species=="hakeoides")
hakeoides_coord <- st_add_coordinates(hakeoides)
s1 <- st_kde(hakeoides)
s2 <- st_kdde(hakeoides, deriv_order=1)
s3 <- st_kquiver(s2, thin=9)
## base R plot
xlim <- c(1.2e5, 1.1e6); ylim <- c(6.1e6, 7.2e6)
plot(wa, xlim=xlim, ylim=ylim)
plot(s1, add=TRUE, alpha=0.5, border="grey50")
plot(s3$tidy_ks$ks[[1]], add=TRUE, display="quiver")
## geom_sf plot - ggquiver::geom_quiver not compatible with ggplot2::geom_sf layers
## use instead geom_segment
gs <- ggplot(s1) + geom_sf(data=wa, fill=NA) + ggthemes::theme_map()
gs + geom_sf(data=st_get_contour(s1), aes(fill=label_percent(contlabel)), alpha=0.5) +
geom_segment(data=s3$sf, aes(x=lon, xend=lon_end, y=lat, yend=lat_end),
arrow=grid::arrow(length=0.05*s3$sf$len)) +
colorspace::scale_fill_discrete_sequential("Heat2") +
coord_sf(xlim=xlim, ylim=ylim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.