tidyst_kroc | R Documentation |
Tidy and geospatial versions of kernel receiver operating characteristic (ROC) curve for 1- and 2-dimensional data.
tidy_kroc(data1, data2, ...)
st_kroc(x1, x2, ...)
data1 , data2 |
data frames/tibbles of data values |
x1 , x2 |
sf objects with point geometry |
... |
other parameters in |
A kernel ROC curve is a modification of the standard kernel distribution estimate where the two data samples are compared. For details of the computation and the bandwidth selection procedure of the kernel density ROC curve, see ?ks::kroc
. The bandwidth matrix of smoothing parameters is computed as in ks::kcde
per data sample.
The output has the same structure as the 1-d kernel distribution estimate from *_kcde
, except that fpr
(x
-variable) is the false positive rate (complement of specificity) and estimate
is the true positive rate (sensitivity), rather than the usual estimation grid points and cdf values.
## 2-d kernel ROC curve between unsuccessful and successful grafts
library(ggplot2)
data(hsct, package="ks")
hsct <- dplyr::as_tibble(hsct)
hsct <- dplyr::filter(hsct, PE.Ly65Mac1 >0 & APC.CD45.2>0)
hsct6 <- dplyr::filter(hsct, subject==6) ## unsuccessful graft
hsct6 <- dplyr::select(hsct6, PE.Ly65Mac1, APC.CD45.2)
hsct12 <- dplyr::filter(hsct, subject==12) ## successful graft
hsct12 <- dplyr::select(hsct12, PE.Ly65Mac1, APC.CD45.2)
t1 <- tidy_kroc(data1=hsct6, data2=hsct12)
ggplot(t1, aes(x=fpr)) + geom_line(colour=1)
## geospatial ROC curve between Grevillea species
data(wa)
data(grevilleasf)
hakeoides <- dplyr::filter(grevilleasf, species=="hakeoides")
paradoxa <- dplyr::filter(grevilleasf, species=="paradoxa")
s1 <- st_kroc(x1=hakeoides, x2=paradoxa)
ggplot(s1, aes(x=fpr)) + geom_line(colour=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.