elliptic: Elliptic Functions

A suite of elliptic and related functions including Weierstrass and Jacobi forms. Also includes various tools for manipulating and visualizing complex functions.

AuthorRobin K. S. Hankin
Date of publication2016-05-26 09:21:13
MaintainerRobin K. S. Hankin <hankin.robin@gmail.com>
LicenseGPL-2
Version1.3-7

View on CRAN

Man pages

amn: matrix a on page 637

as.primitive: Converts basic periods to a primitive pair

ck: Coefficients of Laurent expansion of Weierstrass P function

congruence: Solves mx+by=1 for x and y

coqueraux: Fast, conceptually simple, iterative scheme for Weierstrass P...

divisor: Number theoretic functions

e16.28.1: Numerical verification of equations 16.28.1 to 16.28.5

e18.10.9: Numerical checks of equations 18.10.9-11, page 650

e1e2e3: Calculate e1, e2, e3 from the invariants

elliptic-package: Elliptic and modular functions

equianharmonic: Special cases of the Weierstrass elliptic function

eta: Dedekind's eta function

farey: Farey sequences

fpp: Fundamental period parallelogram

g.fun: Calculates the invariants g2 and g3

half.periods: Calculates half periods in terms of e

J: Various modular functions

K.fun: quarter period K

latplot: Plots a lattice of periods on the complex plane

lattice: Lattice of complex numbers

limit: Limit the magnitude of elements of a vector

massage: Massages numbers near the real line to be real

misc: Manipulate real or imaginary components of an object

mob: Moebius transformations

myintegrate: Complex integration

near.match: Are two vectors close to one another?

newton_raphson: Newton Raphson iteration to find roots of equations

nome: Nome in terms of m or k

p1.tau: Does the right thing when calling g2.fun() and g3.fun()

parameters: Parameters for Weierstrass's P function

pari: Wrappers for PARI functions

P.laurent: Laurent series for elliptic and related functions

sn: Jacobi form of the elliptic functions

sqrti: Generalized square root

theta: Jacobi theta functions 1-4

theta1dash: Derivatives of theta functions

theta1.dash.zero: Derivative of theta1

theta.neville: Neville's form for the theta functions

unimodular: Unimodular matrices

view: Visualization of complex functions

WeierstrassP: Weierstrass P and related functions

Files in this package

elliptic
elliptic/inst
elliptic/inst/CITATION
elliptic/inst/doc
elliptic/inst/doc/residuetheorem.R
elliptic/inst/doc/ellipticpaper.R
elliptic/inst/doc/ellipticpaper.Rnw
elliptic/inst/doc/residuetheorem.Rnw
elliptic/inst/doc/residuetheorem.pdf
elliptic/inst/doc/ellipticpaper.pdf
elliptic/tests
elliptic/tests/aaa.R
elliptic/NAMESPACE
elliptic/demo
elliptic/demo/00Index
elliptic/demo/elliptic.R
elliptic/R
elliptic/R/elliptic.R
elliptic/vignettes
elliptic/vignettes/semicircular_path.svg
elliptic/vignettes/elliptic.bib
elliptic/vignettes/semicircular_path.pdf
elliptic/vignettes/ellipticpaper.Rnw
elliptic/vignettes/residuetheorem.Rnw
elliptic/MD5
elliptic/build
elliptic/build/vignette.rds
elliptic/DESCRIPTION
elliptic/man
elliptic/man/as.primitive.Rd elliptic/man/J.Rd elliptic/man/half.periods.Rd elliptic/man/theta1dash.Rd elliptic/man/unimodular.Rd elliptic/man/e1e2e3.Rd elliptic/man/coqueraux.Rd elliptic/man/P.laurent.Rd elliptic/man/myintegrate.Rd elliptic/man/p1.tau.Rd elliptic/man/lattice.Rd elliptic/man/mob.Rd elliptic/man/ck.Rd elliptic/man/theta.Rd elliptic/man/divisor.Rd elliptic/man/K.fun.Rd elliptic/man/farey.Rd elliptic/man/pari.Rd elliptic/man/parameters.Rd elliptic/man/limit.Rd elliptic/man/equianharmonic.Rd elliptic/man/sn.Rd elliptic/man/e16.28.1.Rd elliptic/man/newton_raphson.Rd elliptic/man/e18.10.9.Rd elliptic/man/amn.Rd elliptic/man/elliptic-package.Rd elliptic/man/near.match.Rd elliptic/man/massage.Rd elliptic/man/WeierstrassP.Rd elliptic/man/eta.Rd elliptic/man/theta1.dash.zero.Rd elliptic/man/latplot.Rd elliptic/man/congruence.Rd elliptic/man/nome.Rd elliptic/man/misc.Rd elliptic/man/g.fun.Rd elliptic/man/sqrti.Rd elliptic/man/fpp.Rd elliptic/man/theta.neville.Rd elliptic/man/view.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.