Description Usage Arguments Details Author(s) References See Also Examples
Jacobian elliptic functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
u |
Complex argument |
m |
Parameter |
... |
Extra arguments, such as |
All sixteen Jacobi elliptic functions.
Robin K. S. Hankin
M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | #Example 1, p579:
nc(1.9965,m=0.64)
# (some problem here)
# Example 2, p579:
dn(0.20,0.19)
# Example 3, p579:
dn(0.2,0.81)
# Example 4, p580:
cn(0.2,0.81)
# Example 5, p580:
dc(0.672,0.36)
# Example 6, p580:
Theta(0.6,m=0.36)
# Example 7, p581:
cs(0.53601,0.09)
# Example 8, p581:
sn(0.61802,0.5)
#Example 9, p581:
sn(0.61802,m=0.5)
#Example 11, p581:
cs(0.99391,m=0.5)
# (should be 0.75 exactly)
#and now a pretty picture:
n <- 300
K <- K.fun(1/2)
f <- function(z){1i*log((z-1.7+3i)*(z-1.7-3i)/(z+1-0.3i)/(z+1+0.3i))}
# f <- function(z){log((z-1.7+3i)/(z+1.7+3i)*(z+1-0.3i)/(z-1-0.3i))}
x <- seq(from=-K,to=K,len=n)
y <- seq(from=0,to=K,len=n)
z <- outer(x,1i*y,"+")
view(x, y, f(sn(z,m=1/2)), nlevels=44, imag.contour=TRUE,
real.cont=TRUE, code=1, drawlabels=FALSE,
main="Potential flow in a rectangle",axes=FALSE,xlab="",ylab="")
rect(-K,0,K,K,lwd=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.