| theta | R Documentation |
Computes Jacobi's four theta functions for complex z in terms
of the parameter m or q.
theta1 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta2 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta3 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta4 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta.00(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta.01(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta.10(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
theta.11(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30, miniter=3)
Theta (u, m, ...)
Theta1(u, m, ...)
H (u, m, ...)
H1(u, m, ...)
z, u |
Complex argument of function |
ignore |
Dummy variable whose intention is to force the user to
name the second argument either |
m |
Does not seem to have a name. The variable is introduced in section 16.1, p569 |
q |
The nome |
give.n |
Boolean with default |
maxiter |
Maximum number of iterations used. Note that the series generally converge very quickly |
miniter |
Minimum number of iterations to guard against premature exit if an addend is zero exactly |
... |
In functions that take it, extra arguments passed to
|
Functions theta.00() et seq are just wrappers for
theta1() et seq, following Whittaker and Watson's terminology
on p487; the notation does not appear in Abramowitz and Stegun.
theta.11() = theta1()
theta.10() = theta2()
theta.00() = theta3()
theta.01() = theta4()
Returns a complex-valued object with the same attributes as either
z, or (m or q), whichever wasn't recycled.
Robin K. S. Hankin
M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover
theta.neville
m <- 0.5
derivative <- function(small){(theta1(small,m=m)-theta1(0,m=m))/small}
right.hand.side1 <- theta2(0,m=m)*theta3(0,m=m)*theta4(0,m=m)
right.hand.side2 <- theta1.dash.zero(m)
derivative(1e-5) - right.hand.side1 # should be zero
derivative(1e-5) - right.hand.side2 # should be zero
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.