emax.glm: General Tools for Building GLM Expectation-Maximization Models

Implementation of Expectation Maximization (EM) regression of general linear models. The package currently supports Poisson and Logistic regression with variable weights, with underlying theory included in the vignettes. New users are recommended to look at the em.glm() and small.em() functions - the outputs of which are supported by AIC(), BIC(), and logLik() calls. Several plot functions have been included for useful diagnostics and model exploration. Methods are based on the theory of Dempster et al (1977, ISBN:00359246), and follow the methods of Hastie et al. (2009) <doi:10.1007/978-0-387-21606-5_7> and A. Zeileis et al (2017) <doi:10.18637/jss.v027.i08>.

Package details

AuthorRobert M. Cook [aut, cre] (<https://orcid.org/0000-0003-3343-8271>)
MaintainerRobert M. Cook <[email protected]>
LicenseGPL-3
Version0.1.2
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("emax.glm")

Try the emax.glm package in your browser

Any scripts or data that you put into this service are public.

emax.glm documentation built on July 4, 2019, 5:04 p.m.