Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(emery)
set.seed(65123)
## ----simulate binary data-----------------------------------------------------
ex_bin_data <-
generate_multimethod_data(
type = "binary",
n_method = 3,
n_obs = 200,
se = c(0.85, 0.90, 0.95),
sp = c(0.95, 0.90, 0.85),
method_names = c("alpha", "beta", "gamma")
)
ex_bin_data$generated_data[98:103, ]
## -----------------------------------------------------------------------------
ex_bin <-
estimate_ML(
type = "binary",
data = ex_bin_data$generated_data,
init = list(prev_1 = 0.8, se_1 = c(0.7, 0.8, 0.75), sp_1 = c(0.85, 0.95, 0.75))
)
ex_bin
## ----fig.width=7, fig.height=4------------------------------------------------
plot(ex_bin)
## ----fig.width=7, fig.height=4------------------------------------------------
plot(ex_bin, params = ex_bin_data$params)
## -----------------------------------------------------------------------------
pmf_pos_ex <-
matrix(
c(
c(0.05, 0.10, 0.15, 0.30, 0.40),
c(0.00, 0.05, 0.20, 0.25, 0.50),
c(0.10, 0.15, 0.20, 0.25, 0.30)
),
nrow = 3,
byrow = TRUE
)
pmf_pos_ex
## -----------------------------------------------------------------------------
pmf_neg_ex <- pmf_pos_ex[, 5:1]
## -----------------------------------------------------------------------------
ex_ord_data <-
generate_multimethod_data(
type = "ordinal",
n_method = 3,
n_obs = 200,
pmf_pos = pmf_pos_ex,
pmf_neg = pmf_neg_ex,
method_names = c("alice", "bob", "carrie"),
level_names = c("strongly dislike", "dislike", "neutral", "like", "strongly like")
)
ex_ord_data$generated_data[98:103, ]
## -----------------------------------------------------------------------------
ex_ord <-
estimate_ML(
type = "ordinal",
data = ex_ord_data$generated_data,
level_names = ex_ord_data$params$level_names
)
ex_ord
## ----fig.width=7, fig.height=4------------------------------------------------
plot(ex_ord, params = ex_ord_data$params)
## -----------------------------------------------------------------------------
ex_con_data <-
generate_multimethod_data(
type = "continuous",
n_method = 3,
n_obs = 200,
method_names = c("phi", "kappa", "sigma")
)
ex_con_data$generated_data[98:103, ]
## -----------------------------------------------------------------------------
ex_con <-
estimate_ML(
type = "continuous",
data = ex_con_data$generated_data
)
ex_con
## ----fig.width=7, fig.height=4------------------------------------------------
plot(ex_con, params = ex_con_data$params)
## -----------------------------------------------------------------------------
ex_boot_bin <- boot_ML(
type = "binary",
data = ex_bin_data$generated_data,
n_boot = 20
)
# print the estimates of sensitivity from the complete data set
ex_boot_bin$v_0@results$se_est
# print the first 3 bootstrap estimates of sensitivity
ex_boot_bin$v_star[[1]]$se_est
ex_boot_bin$v_star[[2]]$se_est
ex_boot_bin$v_star[[3]]$se_est
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.